首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
以某地铁车辆为研究对象,建立了整备状态车体有限元模型和刚柔耦合动力学模型,计算得到整车整备状态下结构模态和在空气弹簧激励下车体各测点的频率响应,并运用模态频率匹配设计策略,针对车体结构建立模态频率规划表,为下吊设备的吊挂方式提供依据。  相似文献   

2.
地铁列车的运行过程中伴随着不同程度的车体板件振动,由此而引起的车体板件辐射噪声是地铁列车车内噪声的重要来源之一。应用模态贡献量分析方法,研究了车体板件的振动对车内场点声压级的影响特性,并通过修改局部板件等效厚度的方式改善车内声场。将地板等效厚度减少2 mm后,场点43 Hz、82 Hz频率处的线性声压级均降低了6 dB以上。通过模态贡献量分析找出对车内噪声贡献较大的模态,并结合其模态振型以及板件节点贡献量分析进行针对性结构优化,这种方法可以起到改善车内场点处声学响应的效果。  相似文献   

3.
借助CAD/CAE仿真软件分别建立无内装地铁A型车声学有限元模型与含内装地铁A型车声学有限元模型.利用多体动力学软件分析获得车体频域激励载荷并加载在车体上,计算车体在模拟运行时的频率响应.以车体板件频率响应位移振动结果作为声学激励,计算车内噪声分布.通过对两者的结果进行对比,研究分析内装结构对车内噪声的影响.  相似文献   

4.
以A型地铁车辆为研究对象,利用SYSNOISE软件计算了车内声场的声学模态。结果表明,车内声场的各阶模态形状基本上呈前后、左右和上下方向对称分布,车内声场共鸣频率和模态形状主要由其几何形状决定。  相似文献   

5.
根据地铁A型铝合金车辆的车体结构建立车内声场计算模型,利用声传递向量技术进行噪声源分析.结果表明:车体地板中部区域、车顶中部区域以及右侧墙中部附近区域对车内声学的贡献较大,是车内的主要噪声源.在增加这些区域车体的壁板厚度后,车内的噪声得到明显地控制.利用Zwicker法对车内噪声响度的计算结果表明:车体壁板增厚后,降低的噪声主要集中在100 Hz频段以下,而在人耳更为敏感的150~350Hz频段上,噪声的降低幅度相对较小.  相似文献   

6.
为研究高速列车表面脉动压力对车内噪声的影响原理,通过小波阈值去噪与相关性系数相结合的方法,提取某线路实测车厢外壁气压信号,得到脉动压力值;采用有限元方法建立中间车体结构、流场以及"结构-流场"流致振动耦合模型,分析耦合系统模态频率,并将提取的脉动压力对耦合模型进行冲击加载,分析车体结构位移及车内气压变化情况。结果表明,车窗处振动位移最大,车体结构振动位移与车体结构固有特性以及加载压力频谱特性有关;车内气压级主要集中在100 Hz以下的中低频段,车体两侧气压比车内中部气压大,靠近车壁处气压更易受车体结构模态影响,车内气压级、耦合系统模态频率与车体振动位移特性有关。  相似文献   

7.
以某时速350 km、16辆编组的双层动车组为研究对象,考虑车辆平衡对车辆布局进行优化,并对动车组除车体外的其他部件进行轻量化设计。建立车体有限元计算模型,采用控制变量法分析车体相关部位参数变化对车体模态的影响,优化车体结构,确定车辆整备状态下的模态频率。结果表明,通过合理的列车布局方案及编组形式,相比于16辆长编组单层动车组,双层动车组的定员可提高31.8%;通过对动车组其他部件质量进行有效控制,质量降低2.4 t;车辆整备状态下菱形模态振动频率可达10.318 Hz。  相似文献   

8.
轻量化地铁车辆多为以型材铆焊成型的铝合金车体结构,必须具有良好的振动特性,以保证旅客的乘坐舒适性。轨道随机不平顺是引起车辆强迫振动的主要原因,有必要分析轨道不平顺激励下铝合金地铁车辆车体的振动响应,为车体优化设计提供理论参考。详细分析了铝合金A型地铁车辆车体结构特点,经过合理简化几何模型,建立了符合车体结构力学特性的白车身有限元模型。以德国高干扰线路作为激励源,运用多体系统动力学分析软件ADMAS/Rail建立了铝合金地铁动车系统动力学分析模型并计算获得车体在转向架支撑处的动载荷。将所求动载荷施加于车体相应位置,在ANSYS软件中进行车体谐响应分析,计算了车体在轨道不平顺激励下的振动响应。结果显示,车体振动最大峰值频率与车体一阶扭转和一阶弯曲模态频率基本一致。  相似文献   

9.
高速列车结构振动噪声预测与降噪技术研究   总被引:2,自引:0,他引:2  
基于有限元法和边界元法以及声传递向量,运用ANSYS软件和SYSNOISE软件研究高速列车车体的结构模态与室内声腔声学模态,仿真分析高速列车结构-声场耦合系统的低频噪声,并对铺设吸声材料和涂敷阻尼材料的车身部件进行声学贡献分析,为高速列车的减振降噪提供理论依据.对某高速列车拖车的仿真分析结果表明:该车声学测试点的总声压级超出了TB 1809-86标准拖车客室的容许噪声值;在某些计算频率下,车体某些部件涂敷阻尼材料后对客室测试点的声学贡献由小变大,这说明阻尼材料不仅改变了这些部件的振动幅值,同时也改变了振动相位.因此,在采用阻尼材料减振降噪时,应对车体板件进行声学贡献分析,充分考虑阻尼材料对测试点声压级的影响,有针对性地采取措施,降低乘客室内噪声.  相似文献   

10.
为研究车体与动力包结构耦合振动特性,计算车体固有模态以及低阶振型,建立了包含车下吊挂动力包的城轨车辆刚柔耦合振动模型,优化分析了动力包结构吊挂参数对车体振动特性的影响。计算结果表明:车体一阶弯曲频率对车辆垂向性能的影响要大于二阶弯曲频率。将动力包的振动以周期激励形式输入模型,当激振频率达到9.5 Hz和16.5 Hz时分别与车体的一阶和二阶弯曲频率相叠加,在此频率下车体的平稳性指标迅速恶化,因此在车辆设计过程中应尽量避免发生该频率下共振。  相似文献   

11.
针对铁道客车模态耦合引起的共振问题,提出包含转向架、车体及附属设备的模态规划方法。建立某铁道客车的车体有限元模型,基于Guyan缩减法对弹性车体进行自由度缩减,建立车辆的刚柔耦合分析模型。调整车体主要结构的材料属性改变车体的低阶弹性模态频率,分析弹性模态变化对车辆平稳性的影响及单个模态对平稳性的贡献量,基于动态响应特性对车体局部结构和车载设备进行模态匹配研究,给出了该铁道客车的关键模态规划推荐表。结果表明,该模态规划研究方法具有较好的合理性和适应性,能够应用于其他铁道客车的模态匹配分析。  相似文献   

12.
以C76运煤敞车为原型,通过理论模态计算和试验模态分析,研究运煤敞车结构在整备状态下的动态特性,给出其空车和重载条件下的各阶模态频率和振型。研究车辆结构简化的原则和约束条件,运用ANSYS软件,建立敞车结构的有限元模型并予以试验校正。对车体结构进行轻量化设计,提出在车体侧墙中部和底部增加加强筋以增强车体主框架结构刚度,并适当降低面板厚度的轻量化设计方案。经对比分析表明,该轻量化方案可降低车体重量约0.77 t,并可有效提高车体结构的静、动态特性。该方案在载重80 t全钢运煤敞车设计中得到运用,并通过了线路测试。  相似文献   

13.
重载电力机车司机室声振特性分析   总被引:3,自引:2,他引:1  
基于一重载电力机车司机室的详细结构有限元模型,对其结构模态进行了计算和分析,应用声学有限元法对室内空腔声学模态、轮轨垂向随机激励下的室内声压、室内测试场点处6.3~200 Hz频率范围内的声压频率响应进行了仿真计算。结果表明:司机室结构的局部模态频率比较密集,且主要在80 Hz以下的低频段;现有司机室空腔声学模态的零声压节线在较大范围内使人耳处于声压幅值较小的区域;在运行速度100 km/h,轮轨垂向随机激励下,空腔声学模态的节线位置发生了稍许偏移;阻尼和吸声材料使室内100~200 Hz频段内的噪声特性有明显的改善。  相似文献   

14.
为找出高速列车车体主要模态对车辆振动的影响规律,引入BGCI向量法对车体模态贡献量进行计算。建立某高速列车刚柔耦合模型,采用随机子空间法对车辆工作模态参数进行识别,通过模态置信判据MAC对主要模态进行判定,计算在不同运行速度下车体的模态贡献量。结果表明,车体刚体模态贡献量随列车运行速度增加逐渐减小,当列车运行速度低于120km/h时,车辆刚体模态贡献量大于弹性模态,速度高于120km/h时反之。当列车速度大于80km/h时,车体的菱形模态、垂向弯曲模态、扭转模态对车体振动贡献值逐渐增大(最大为0.035m/s2),弹性模态对振动贡献量明显增加。本文研究的模态贡献量与车辆振动关系可以为车辆振动控制提供理论支撑。  相似文献   

15.
介绍了出口突尼斯内燃动车组噪声控制要求、噪声源频谱特性,制定了车辆断面结构的隔声设计方案,为验证方案的合理性,对车辆所用材料及组合结构进行了隔声试验和振动试验,同时通过预测车内噪声及建立有限元模型,对车内声场进行仿真计算,进一步证明了车辆隔声结构设计合理,能够有效控制车辆内部噪声。  相似文献   

16.
对某型地铁车辆整备状态有限元模型进行了模态和5~100Hz正弦激励仿真计算,分析设备吊挂刚度对车体地板的振动影响。计算结果表明,车下设备吊挂刚度对弹性车体的各种振动模态均有不同程度的影响;车体空气弹簧位置激励时,地板在不同吊挂刚度时的振动响应主要集中在40Hz以内,合适的设备吊挂刚度可有效的降低地板的振动幅值并增加一阶垂弯频率,吊挂刚度对地板在12Hz以上的振动响应影响不大,同时发现刚性吊挂有助于增加车体的刚度;设备激励时,引起地板振动响应主要集中在20Hz以下,激励频率在车体一阶垂弯模态频率附近时,弹性吊挂刚度小于一定值时才能有效地减小地板振动的响应幅值。  相似文献   

17.
基于有限元理论,对某型悬挂式单轨交通车辆车体进行了仿真计算,按照相关标准的要求,结合车辆的实际运行特点,选取了车体纵向压缩、纵向拉伸、单端坠落、两端坠落和架车5个主要静强度工况,以及车体铝合金结构和整备状态的车体结构进行了模态分析计算。研究结果表明:各个主要静强度工况下车体的最大应力均满足要求,并且安全系数都在1. 15之上;两种状态下的车体一阶垂弯振动频率及一阶扭转振动频率均大于10 Hz。另外,悬挂式单轨交通系统车辆作为一种特殊的轨道运载车辆,应特别考虑其防坠落装置的安全性。  相似文献   

18.
为研究车轮滚动及轨道板激励与车辆固有频率匹配关系,首先对某动车车体进行静态台架模态试验,识别车体固有模态参数;然后在某线路上测试车体振动加速度,识别车体在各互功率谱峰值处ODS变形。通过理论计算车轮滚动频率与某高阶变形频率接近,该频率下车体变形为车轮滚动激励所导致;在速度250km/h,轨道板激励频率与车体1阶垂弯频率接近,车体1阶垂弯变形被轨道板激励频率激发,车体能量较大,垂弯振动较为剧烈,车体中部和转向架上方地板振动较大。轨道板激励导致车体强迫共振。  相似文献   

19.
文章利用HyperMesh软件建立了B型地铁铝合金车体有限元模型,并利用ANSYS软件对车体结构进行了模态计算,得到了4种方案下车体的前六阶固有频率及相应振型。根据计算结果提出了改进车体结构的建议。  相似文献   

20.
建立了跨坐式单轨车辆头车车体的三维几何模型和有限元模型,并对其进行模态分析,得到了该车体的固有频率和相应的振型.通过对计算结果的分析,指出了设计中可能存在的问题,提出了改进的建议.在低频段的外界激励下,车体的整体振动并不强烈,主要是裙板部分产生较大的振动;为抑制其振动,可采用前、中、后裙板之间进行连接并在后裙板与铝地板...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号