首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the influence of heave and pitch motions on green water impact on the deck is numerically investigated. The vessel motions are determined using a potential theory based method and provided as input to finite volume based CFD computations of green water phenomenon. A dynamic mesh approach is adopted to determine instantaneous body positioning in the fluid domain.Detailed validation studies with published experimental results for 2D and 3D fixed vessel cases are initially performed to validate the present numerical approach before studying the moving vessel problem. The results show that inclusion of heave and pitch motion changes the disturbed wave field near the bow which influences the free surface as well as the impact loading due to green water. The effect of wave steepness on green water impact is also investigated and it is seen that the present numerical method is capable of capturing green water load. It is observed that the effects of vessel motions on green water load are not negligible and one should consider this effect too. The incorporation of vessel motions in the vertical plane affects the green water loading on the deck.  相似文献   

2.
以连续性方程和N-S方程为控制方程,采用源造波理论和技术,建立了具有造波和消波功能的二维数值波浪水槽,并使用VOF方法追踪自由面来模拟二维情况下的甲板上浪问题.文中就迎浪状态下的固定FPSO和横浪状态下的运动船体断面模型所遭遇的甲板上浪现象分别进行了数值模拟研究.船体的运动规律通过势流理论计算结果给定,在上浪现象模拟计算时,船体的运动采用移动网格技术实现.研究表明,计算结果与试验结果相当吻合,该方法可以用于甲板上浪现象的预报和模拟,可以用于分析预报甲板上浪对浮体的破坏作用.  相似文献   

3.
高慧  张照钢 《船舶工程》2016,38(8):54-57
甲板上浪属于非常复杂和强非线性的波体相互作用过程。研究甲板上浪的基本方法包括理论分析、模型试验和数值计算。本文利用浪高仪测试方法对特定实验工况捕捉甲板上浪特征参数信息,分析甲板上浪的水位高度、上浪量与浮态之间的关系。利用PIV方法捕捉了波浪沿模型首端爬行、变形、破碎的过程[1]。获得了上浪的统计规律,有助于自由液面的非线性流体力学模型试验技术的发展,推动相应学科的进步和发展。  相似文献   

4.
A constrained interpolation profile (CIP)-based Cartesian grid method for strongly nonlinear wave–body interaction problems is presented and validated by a newly designed experiment, which is performed in a two-dimensional wave channel. In the experiment, a floating body that has a rectangular section shape is used. A superstructure is installed on the deck and a small floating-body freeboard is adopted in order to easily obtain water-on-deck phenomena. A forced oscillation test in heave and a wave–body interaction test are carried out. The numerical simulation is performed by the CIP-based Cartesian grid method, which is described in this paper. The CIP scheme is applied in the Cartesian grid-based flow solver. New improvements of the method include an interface-capturing method that applies the tangent of hyperbola for interface capturing (THINC) scheme and a virtual particle method for the floating body. The efficiency of the THINC scheme is shown by a dam-breaking computation. Numerical simulations on the experimental problem for both the forced oscillation test and the wave–body interaction test are carried out, and the results are compared to the measurements. All of the comparisons are reasonably good. It is shown, based on the numerical examples, that the present CIP-based Cartesian grid method is an accurate and efficient method for predicting strongly nonlinear wave–body interactions.  相似文献   

5.
The moving particle semi-implicit (MPS) method was applied to compute nonlinear motions of a floating body influenced by the water on deck. To compute the motions of a rigid body, the fluid pressure at the position of each particle on the body surface was directly integrated in space and the equations of translational and rotational motions were integrated in time to determine the correct position of the rigid-body surface at each time step of the time-domain calculation. The performance of this method was validated through a comparison with measured results in an experiment that was newly conducted using a model of a box-shaped floating body with a small freeboard. Although the overall agreement was good, some discrepancies were observed for a shorter wave period, especially for the drift motion in sway. The effect of numerical resolution on the results was checked by changing the number of particles. With a higher number of particles, no obvious improvement was seen in the global body motions, but the resolution of the local free-surface profile, including the water on deck, was improved.  相似文献   

6.
In the previous paper, one of the authors proposed a new time-domain nonlinear strip method for a rigid body, in which hydrodynamic forces are evaluated by a convolution integral with the memory function computed for the instantaneous submerged part of the transverse sections, and the Froude–Krylov and hydrostatic forces are evaluated on the instantaneous wetted hull surface. In this paper, first, that nonlinear strip method is extended for an elastic body using a method of superposition of elastic mode functions, which enabled us to investigate whipping phenomena due to impulsive large waves. Second, the influence of different approximations of the pressure above the still-water surface is investigated, and then the results calculated by the proposed nonlinear strip method are compared with the experimental ones. Third, whipping phenomena observed for an elastic body at higher Froude numbers are studied through a comparison between computed and measured results. Higher-frequency vibrations in the vertical bending moment due to slamming are discussed. Furthermore, the wave load due to green water on deck is calculated by introducing a practical model, and the effects of the green water on responses of both rigid and elastic bodies are investigated.  相似文献   

7.
A numerical method was developed to predict the water impact pressure caused by green water phenomena. The density function method was employed in the framework of a locally refined overlapping grid system. The simple problem of a rectangular body placed in regular waves was considered and the simulation results were compared with tank experiments. Good agreement with experiment was shown for wave–body interactions and for the pressure values at three different positions on the body. The case of a rectangular body with a vertical wall on the deck was also considered and the comparison showed satisfactory agreement. It was demonstrated that this method could be extended to a moving body problem, in which the body was free to undergo heave, pitch, and surge motions.  相似文献   

8.
This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.  相似文献   

9.
This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method(BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes(1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion,(2) liquid droplets or column impact as well as wave impact on a body,(3) similarity solution of an expanding body. It covers two dimensional(2D), axisymmetric and three dimensional(3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.  相似文献   

10.
Various water wave problems involving an infinitely long horizontal cylinder floating on the surface water were investigated in the literature of linearized theory of water waves employing a general multipole expansion for the wave potential. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace’s equation (for non-oblique waves in two dimensions) or two-dimensional Helmholz equation (for oblique waves) satisfying the free surface condition and decaying rapidly away from the point of singularity. The method of constructing these wave-free potentials is presented here in a systematic manner for a number of situations such as deep water with a free surface, neglecting or taking into account the effect of surface tension, or with an ice-cover modelled as a thin elastic plate floating on water.  相似文献   

11.
波浪与建筑物的相互作用过程会涉及到波浪破碎、水气掺混和结构物的动力响应等复杂过程,对数值算法提出了更高要求。文章基于紧致插值曲线CIP(Constrained Interpolation Profile)方法建立了可模拟波浪破碎、翻滚等自由面大变形流动问题的数学模型。模型以CIP方法为流场基本求解器,离散了纳维—斯托克斯(Navier-Stokes:N-S)方程,同时还以CIP方法捕捉了自由面,通过多相流理论描述了流—固—气之间的相互作用。对强非线性自由表面流动问题的典型算例溃坝问题开展了数值模拟,并通过与他人实验结果的比较验证了模型的有效性。最后开展了极端波浪对浮式结构冲击过程的模拟,准确地预测了甲板上浪和结构的动力响应等问题。  相似文献   

12.
石丽娜  孙雪荣 《船舶工程》2018,40(S1):21-23
本文采用三维有限元分析技术对某半潜船甲板室局部振动情况进行模态分析预报, 并结合本船主要相关激励源频率错开要求与半潜船型自身的结构布置特点,对甲板室结构进行设计研究,降低了本船甲板室局部振动风险。本文为类似船型甲板室结构动力学设计提供了基本流程与设计方法。  相似文献   

13.
滚装船中车辆等重载荷由于固定装置失效而随船摇荡作自由滑动时,往往由于反复碰撞致使在甲板上作自由滑动的重载荷随着时间增多.由于波浪和内部滑动车辆共同作用,使滚装船的横摇加剧.这是许多滚装船发生倾覆的重要原因之一.本文对由滚装船和两辆滑动车辆组成的浮基多体系统,取滚装船的横摇角和两辆自由滑动车辆在甲板上的横向位移为此系统的三个自由度,运用多体系统动力学方法,建立了系统的动力学方程.以某型海峡滚装渡轮为例,对在两辆车自由滑动和波浪共同作用下的滚装船浮基多体系统的横摇响应和车辆位移响应进行了数值计算,得出了多个自由滑动的重载荷因相互碰撞在舷侧舱壁的约束下随着时间的延长其运动将趋于同步的结论.  相似文献   

14.
针对长甲板室纵向围壁端部与主船体露天甲板交界处的应力集中问题,采用结构有限元数值分析方法,探讨在空间布置受到限制的条件下,应力集中交界处圆弧型肘板臂长、圆弧半径等参数变化对应力分布和大小的影响,并得到降低应力集中系数的圆弧型肘板参数的最佳值。文中根据研究结果,对某艘实船的长甲板室纵向围壁端部与主船体露天甲板交界处圆弧型肘板进行优选设计,有效地降低了该处的应力集中水平。  相似文献   

15.
Wave impact underneath horizontal decks   总被引:1,自引:0,他引:1  
The problem of water impact on a fixed horizontal platform deck from regular incident waves was studied. Two-dimensional potential flow was assumed, and the resulting boundary-value problem was solved by three alternative numerical methods, a method based on a generalization of the impact theory by Wagner, and two different nonlinear boundary-element methods. The Wagner-based method used a von Karman approach during the water exit phase, i.e., when the wetted surface decreases. Experiments of the impact on an idealized platform deck have been performed to validate the theory. Comparisons show that the Wagner-based method yields good results for the water entry phase, when the wetted deck area increases, but poor results when the wetted area diminishes. The boundary-element methods compare well with experiments for the entire impact process. A Kutta condition is necessary at the aft body–free surface intersection during water exit and when the flow separates from the aft edge. Gravity effects matter for the water exit phase.  相似文献   

16.
The effects of a moving gate on dam break flow experiments are numerically considered in this paper. The dam break flow process is modelled by a sudden gate release. A Constrained Interpolation Profile (CIP)-based model is employed to solve the Navier-Stokes equations with the free surface boundary condition to deal with the water-air-gate interactions. In addition, the VOF-type THINC/SW method is used to capture the free surface. The movable gate is simulated by an immersed boundary, and a gate motion formula is proposed from existing experimental data and applied in the dam break flow computations. The difference between the water profile and pressure domain with/without gate motion is examined. The dam breaks with different gate motions are discussed as well. The numerical results show that the proposed gate motion formula correlates well with the numerical modelling, and the gate motion has a significant influence in the water collapse process and cannot be neglected in the study of dam break.  相似文献   

17.
With increases in ship size and speed, shipboard vibration becomes a significant concern in the design and construction of vessels. Excessive ship vibration is to be avoided for passenger comfort and crew habitability. In addition to the undesired effects on humans, excessive ship vibration may result in the fatigue failure of local structural members or malfunctioning of machinery and equipment. The propeller induces fluctuating pressure on the surface of the hull, which induces vibration in the hull structure. These pressure pulses acting on the ship hull surface above the propeller are the predominant factor for vibrations of ship structures are taken as excitation forces for forced vibration analysis. Ship structures are complex and may be analyzed after idealization of the structure. Several simplifying assumptions are made in the finite element idealization of the hull structure. In this study, a three-dimensional finite element model representing the entire ship hull, including the deckhouse and machinery propulsion system, has been developed using solid modeling software for local and global vibration analyses. Vibration analyses have been conducted under two conditions: free–free (dry) and in-water (wet). The wet analysis has been implemented using acoustic elements. The total damping associated with overall ship hull structure vibration has been considered as a combination of the several damping components. As a result of the global ship free vibration analysis, global natural frequencies and mode shapes have been determined. Moreover, the responses of local ship structures have been determined as a result of the propeller-induced forced vibration analysis.  相似文献   

18.
接触爆炸下舰船强力甲板塑性动态响应特性研究   总被引:1,自引:0,他引:1  
基于舰船强力甲板结构和接触爆炸工况设计,采用非线性有限元计算方法对在不同炸药量下、不同尺寸的纵桁和强横梁的强力甲板进行接触爆炸数值模拟。分析球形炸药接触爆炸下空气冲击波的压力分布以及对甲板的冲击过程,结果显示强力甲板结构在接触爆炸下呈现出3种破坏模式,并通过定义构件相对强度因子,提出了破坏模式的判别条件,初步揭示舰船强力甲板在接触爆炸下的塑性动态响应特性。  相似文献   

19.
金凤  万超 《水运工程》2015,(12):10-15
采用计算机数值模拟方法,在FLUENT软件计算平台上建立了二维规则波数值波浪水槽,对透空有梁面板结构底面受到的波浪冲击作用进行研究。数学模型采用RANS方程和k-ε湍流模型,以VOF方法处理自由表面。通过对不同工况的数值模拟和试验结果比较,验证了模型的造消波性能和应用的有效性。通过计算,得到了波浪冲击过程中波陡、超高和板宽各因素对冲击压强的影响。最后在已有冲击压强计算公式基础上提出了修正公式,以更准确地预报波浪的冲击荷载,深入认识波浪冲击机理。  相似文献   

20.
A CIP-based method for numerical simulations of violent free-surface flows   总被引:3,自引:0,他引:3  
A CFD model is proposed for numerical simulations of extremely nonlinear free-surface flows such as wave impact phenomena and violent wave–body interactions. The constrained interpolation profile (CIP) method is adopted as the base scheme for the model. The wave–body interaction is treated as a multiphase problem, which has liquid (water), gas (air), and solid (wave-maker and floating body) phases. The flow is represented by one set of governing equations, which are solved numerically on a nonuniform, staggered Cartesian grid by a finite-difference method. The free surface as well as the body boundary are immersed in the computation domain and captured by different methods. In this article, the proposed numerical model is first described. Then to validate the accuracy and demonstrate the capability, several two-dimensional numerical simulations are presented, and compared with experiments and with computations by other numerical methods. The numerical results show that the present computation model is both robust and accurate for violent free-surface flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号