首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A direct link between band structure and the ballistic transport property of full-Heusler alloys based Co2 YZ/Al/Co2 YZ trilayers (Y = Sc, Ti, V, Cr, Mn and Fe; Z = Al, Si and Ge) has been studied by firstprinciples calculations. It is found that the transport efficiency is determined primarily by three factors related to band structure: the shape of the band crossing Fermi energy E F, the distance d of the two intersection points of Co2 YZ and Al at E F, and the absolute maximum of the energy lying in the E F-crossing band, |Emax|. The transmission coefficient distribution patterns imply that the affected factor of magneto-resistance (MR) ratio is attributed to the band features around E F. In general, an intuitively illustrated diagram is proposed to clarify the relationship between the probability of electron transition and the current magnitude.  相似文献   

2.
Among several post quantum primitives proposed in the past few decades, lattice-based cryptography is considered as the most promising one, due to its underlying rich combinatorial structure, and the worst-case to average-case reductions. The first lattice-based group signature scheme with verifier-local revocation(VLR) is treated as the first quantum-resistant scheme supported member revocation, and was put forward by Langlois et al. This VLR group signature(VLR-GS) has group public key size of O(nm log N log q), and a signature size of O(tm log N log q log β). Nguyen et al. constructed a simple efficient group signature from lattice, with significant advantages in bit-size of both the group public key and the signature. Based on their work, we present a VLR-GS scheme with group public key size of O(nm log q) and signature size of O(tm log q). Our group signature has notable advantages: support of membership revocation, and short in both the public key size and the signature size.  相似文献   

3.
Abstract: This paper focuses on the combustion optimization to cut down NO x emission with a new strategy. Firstly, orthogonal experimental design (OED) and chaotic sequences are introduced to improve the performance of particle swarm optimization (PSO). Then, a predicting model for NO x emission is established on support vector machine (SVM) whose parameters are optimized by the improved PSO. Afterwards, a new optimization model considering coal quantity and air quantity along with the traditional optimization variables is established. At last, the operating parameters are optimized by the improved PSO to cut down the NO x emission. An application on 600MW unit shows that the new optimization model can cut down NO x emission effectively and maintain the load balance well. The NO x emission optimized by the improved PSO is lowest among some state-of-the-art intelligent algorithms. This study can provide important guides for the low NO x combustion in the power plant.  相似文献   

4.
Aiming to the puzzle that the inner load of nonlinear synthesis transmission system is difficult to obtain, a new kind of virtual prototype establishment and simulation method is put forward. The influence on nonlinear vibration with flexible rotor, bearing backlash is analyzed based on a virtual prototype. To validate the virtual prototype of nonlinear gear transmission system, the corresponding test platform is established. The consistency between simulation results and test results proves that the simulation results of the virtual prototype can be used to calculate the fatigue reliability life of key components. A new kind of fatigue reliability life prediction method of gear system considering multi-random parameter distribution is put forward based on the fatiguestatistic theory. Considering the periodicity of gear meshing, linear interpolation method is adopted to obtain the stress-time course of random load spectrum based on the gear’s complicated torque provided by virtual prototype. The gear’s P-Sa-Sm-N curved cluster can be simulated based on material’s P-S-N curve. The simulation process considers the parameter distributions of stress concentration coefficients, dimension coefficients and surface quality treatment coefficients, and settles the puzzle that traditional test methods cannot acquire the gear’s fatigue life of all reliability levels. This method can provide the distribution function and the interval of fatigue reliability life of gear’s danger region, and has a guide meaning for the gear maintenance periods determination and reliability evaluation.  相似文献   

5.
Considering the modeling uncertainties and external disturbance, a kind of sliding mode robust H∞fault-tolerant control method for time delay system with actuator fault is proposed. The upper-bound of the uncertainties is considered as a known constant, while the upper-bound of the actuator fault is unknown. A sufficient condition for the existence of an integral sliding mode dynamics is given in terms of linear matrix inequality(LMI). A novel adaptive law is given to estimate the unknown upper-bound of faults. On this basis, a type of sliding mode robust H∞fault-tolerant control law is designed to guarantee the asymptotic stability and the H_∞ performance index of the system. Finally, the simulation on quad-rotor semi-physical platform demonstrates the reliability and validity of the method.  相似文献   

6.
CuCeZrOx and KCuCeZrOx catalysts were synthesized and coated on the blank diesel particulate filter (DPF) substrate and a particulate matter (PM) loading apparatus was used for soot loading. The catalytic performances of soot oxidation were evaluated by temperature programmed combustion (TPC) test and characterization tests were conducted to investigate the physicochemical properties of the catalysts. The reaction mechanism in the oxidation process was analyzed with diffuse reflectance infrared Fourier transform spectroscopy. The results demonstrated that CuCeZrOx catalyst exhibited high activities of soot oxidation at low temperature and the best results have been attained with Cu0.9Ce0.05Zr0.05Ox over which the maximum soot oxidation rate decreased to 410 °C. Characterization tests have shown that catalysts containing 90% Cu have uniformly distributed grains and small particle sizes, which provide excellent oxidation activity by providing more active sites and forming a good bond between the catalyst and the soot. The low-temperature oxidation activity of soot could be further optimized due to the excellent elevated NO’s conversion rate by partially substituting Cu with K. The maximum particle oxidation rate can be easily realized at such a low temperature as 347°C.  相似文献   

7.
A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP ship system to a fuzzy system with time-varying delay. Adequate conditions are derived to determine the system's asymptotical stability and achieve H∞performance via Lyapunov stability theorems. Then, the fuzzy sampled-data controller is obtained by analyzing the stabilization condition. Simulation result shows that the proposed method and the designed controller for a DP ship are effective so that the DP ship can maintain the desired position, heading and velocities in the existence of varying environment disturbances.  相似文献   

8.
This paper investigates exact performance of an amplify-and-forward (AF) relay system based on water-filling power allocation in Nakagami-m fading environment, where m is a nonnegative integer plus one half. We first offer the cumulative distribution function (CDF) and probability density function (PDF) of the received signal-to-noise ratio (SNR) at a destination. Then outage probability, moments of SNR, higher-order statistics of the capacity are explicitly conducted. Especially, average symbol error rate (SER) under an additive white generalized Gaussian noise (AWGGN) is developed for water-filling power allocation scheme. While the average SER subjected by an additive white Gaussian noise (AWGN) can be regarded as a special case. Finally, all theoretical formulas are truly attested by various simulation results.  相似文献   

9.
An immersed body boundary method is adopted to track the motions of a towing cylinder, and a homogenous multiphase Eulerian-Eulerian fluid approach is used to capture the free surface. The Reynolds average Navier-Stockes (RANS) solver is applied to all gird nodes to deal with different velocities of the nodes that are in the body boundary, near the boundary and out of the boundary and their effect on the fluid. The towing cylinder resistance at different submerged depths in the tank is presented. The simulation results are compared with the experimental data, and the method is verified and validated. Finally, the hydrodynamic characters of the cylinder are discussed further. The numerical and experimental results show that at high speeds, the deeper the cylinder submerges, the lower resistance it suffers. The resistance coefficient trough is obtained at Froude number in the range of 0.3 < F r < 0.4. These phenomena can provide some suggestions on the small waterplane area twin hull (SWATH) design.  相似文献   

10.
A novel five-axis real-time interpolation algorithm for 3[PP]S-XY hybrid mechanism is proposed in this paper. In the algorithm, the five-axis tool path for controlling this hybrid mechanism is separated into two sub-paths. One sub-path describes the movement of 3[PP]S parallel kinematic mechanism module, and the other one describes the movement of XY platform. A pair of cubic Bezier curves is employed to smooth the corners in those two sub-paths. Based on the homogenous Jacobian matrix of 3[PP]S mechanism, a relationship between the position errors of every driving joint in hybrid mechanism and the position deviation of the tool tip center point at the moving platform is established. This relationship is used to estimate the approximation error for the corners smoothing according to the accuracy requirement of tool tip center in interpolation. Due to the high computational efficiency of this corner smoothing method, it is integrated into the look-ahead module of computer numerical control (CNC) system to perform online tool path smoothing. By performing the speed planning based on a floating window scheme, a jerk limited S-shape speed profile can be generated efficiently. On this basis, a realtime look-ahead scheme, which is comprised of path-smoothing and feedrate scheduling, is developed to acquire a speed profile with smooth acceleration. A monotonic cubic spline is employed for synchronization between those two smoothed sub-paths in tool path interpolation. This interpolation algorithm has been integrated into our own developed CNC system to control a 3PRS-XY experimental instrument (P, R and S standing for prismatic, revolute and spherical, respectively). A club shaped trajectory is adopted to verify the smoothness and efficiency of the five-axis interpolator for hybrid mechanism control.  相似文献   

11.
Well-defined raspberry-like magnetic microbeads(RMMBs) as immunoassay solid carriers were prepared by chemical covalent binding between Fe3O4 magnetic microspheres and SiO2 nanoparticles. These RMMBs were not as agglomerative as nano-sized magnetie particles( 200 nm), which was an advangtage for high efficient magnetic separation. When compared to Fe3O4@SiO2core-shell magnetic microbeads(CMMBs) with smooth surface, RMMBs exhibited stronger capacity to bind biomolecules. Limit of blank(LoB) and limit of detection(LoD) of HBsAg detection using RMMBs as carriers via chemiluminiscence immunoassay(CLIA) were 0.472 and1.022 μg/L, respectively, showing a notable improvement compared with CMMBs whose LoB and LoD were 1.017 and 1.988 μg/L, respectively. All these indicated a great potential of RMMBs in immunoassay application.  相似文献   

12.
ZnO nanostructures were prepared in aqueous solution by microwave hydrothermal synthesis. Xray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were used to characterize ZnO nanostructures (ZNs). The effects of pH, reaction temperature and reaction time on yield of ZnO were investigated. The yield of ZnO increased significantly with the increase of pH value, reaction temperature and reaction time. High yield and well crystallinity of ZNs could be obtained at 120°C for 60min by microwave hydrothermal synthesis. The spherical and rugby-like ZNs were obtained at 120°C without triethanolamine (TEA) and with TEA (mass ratio, $r = m_{Zn^{2 + } }$ : m TEA = 1: 1), respectively. The concentration of Zn(OH) 4 ?2 ions in the reaction solution and TEA had an important effect on the nucleation and morphology of ZnO nanostructures. Mechanism for the formation of ZnO nanostructures was proposed.  相似文献   

13.
The micro-structure on hard-brittle chip materials (HBCMs) surface can produce predominant functions and features. The micro-grinding with diamond wheel micro-tip is an efficient method to machine microstructure on HBCMs. However, different HBCMs and crystal orientation may have a significant influence on the micro-grinding performance. In this paper, the micro-grinding performance along different crystal orientation of HBCMs is investigated. First, a dressed 600# diamond grinding wheel is used to micro-grind micro-structure on HBCMs. Then, the experiment of micro-grinding force test is completed. Finally, the quality of microgroove, the grinding ratio and the micro-grinding force are investigated and they are related to the crystal orientation of HBCMs. It is shown that the stronger resistance to the micro-crack propagation has the best quality of microgroove and the smallest grinding ratio. Moreover, the hardest single-crystal SiC has the best machinability and the micro-grinding force is 38.9%, 10.8% and 46.8% less than the one of sapphire, single-crystal Si and quartz glass, respectively. The direction to micro-grind easily is the crystal orientation 〈10\(\overline 1 \)0〉 for single-crystal SiC and sapphire. In addition, the micro-grinding force increases with the increase of the micro-grinding depth and feed rate and decreases with the increase of the grinding wheel speed.  相似文献   

14.
Sparse signal recovery is a topic of considerable interest, and the literature in this field is already quite immense. Many problems that arise in sparse signal recovery can be generalized as a convex programming with linear conic constraints. In this paper, we present a new proximal point algorithm (PPA) termed as relaxed-PPA (RPPA) contraction method, for solving this common convex programming. More precisely, we first reformulate the convex programming into an equivalent variational inequality (VI), and then efficiently explore its inner structure. In each step, our method relaxes the VI-subproblem to a tractable one, which can be solved much more efficiently than the original VI. Under mild conditions, the convergence of the proposed method is proved. Experiments with l 1 analysis show that RPPA is a computationally efficient algorithm and compares favorably with the recently proposed state-of-the-art algorithms.  相似文献   

15.
The spacecraft space radiation environment was simulated by60 Co source. The polytetrafluoroethylene(PTFE) coatings were fabricated on LY12 substrates. And the effect of gamma(γ) irradiation on the tribological behavior of PTFE coatings under vacuum conditions was investigated. Results indicate that the radiation dose has insignificant effect on the friction coefficient of PTFE coatings, and the wear of PTFE coatings reduces with the increase of gamma dose. As the gamma dose was 100 kGy, the friction coefficient of the PTFE coatings first increased with the increase of sliding velocity and then decreased, and the wear of the PTFE coatings decreased with the increase of sliding speed. As the gamma dose was 100 kGy, the friction coefficient of the PTFE coatings first decreased with the increase of load and then increased, and the wear rate of PTFE coatings increased with the increase of load. Scanning electron microscope was utilized.  相似文献   

16.
AbstractCopy deterrence is a digital watermarking application which enables a seller to identify the buyers who obtain digital content legally but illegally redistribute it. However, in many buyer-seller watermarking protocols proposed for copy deterrence, the seller has to embed two watermarks into each copy of the digital content before it is sold. In this paper, we propose a new buyer-seller watermarking protocol in which the seller can reduce the number of the embedded watermarks from two to one. The proposed protocol also provides a more efficient solution to the unbinding problem than that of Lei et al’s scheme.  相似文献   

17.
In this paper an adaptive iterative learning control scheme is presented for the output tracking of a class of nonlinear systems. An observer is designed to estimate the tracking errors. A mixed time domain and s-domain representation is constructed to derive an error model with relative degree one for our purpose. And time-varying radial basis function neural network is employed to deal with system uncertainty. A new signal is constructed by using a first-order filter, which removes the requirement of strict positive real (SPR) condition and identical initial condition of iterative learning control. Based on property of hyperbolic tangent function, the system tracing error is proved to converge to the origin as the iteration tends to infinity by constructing Lyapunov-like composite energy function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.  相似文献   

18.
Block-matching and 3D-filtering(BM3D) is a state of the art denoising algorithm for image/video,which takes full advantages of the spatial correlation and the temporal correlation of the video. The algorithm performance comes at the price of more similar blocks finding and filtering which bring high computation and memory access. Area, memory bandwidth and computation are the major bottlenecks to design a feasible architecture because of large frame size and search range. In this paper, we introduce a novel structure to increase data reuse rate and reduce the internal static-random-access-memory(SRAM) memory. Our target is to design a phase alternating line(PAL) or real-time processing chip of BM3 D. We propose an application specific integrated circuit(ASIC) architecture of BM3 D for a 720 × 576 BT656 PAL format. The feature of the chip is with 100 MHz system frequency and a 166-MHz 32-bit double data rate(DDR). When noise is σ = 25, we successfully realize real-time denoising and achieve about 10 d B peak signal to noise ratio(PSNR) advance just by one iteration of the BM3 D algorithm.  相似文献   

19.
Electromagnetic tomography (EMT) is a non-invasive imaging technique capable of mapping the conductivity and permeability of an object. In EMT, eddy currents are induced in the object by the activation coils, and the receiving coils can measure the EMT voltages. When the activation frequency is significantly large, we can treat the metallic targets as electrically perfect conductors (EPCs). In this situation, a thin skin approximation is reasonable and this type of scattering problem can be effectively treated by the boundary element method (BEM) formulated through integration equations. In this study, we compute three-dimensional (3D) sensitivity matrix between the sensors due to an EPC perturbation. Efficiency improvement is achieved through the utility of scalar magnetic potential. Two EPC objects, one sphere and one cube shaped, are simulated. The results agree well with the H dot H formula. Overall, we conclude that BEM can be used to calculate the 3D sensitivity matrix of an EMT system efficiently. This method is a general one for any shaped objects while the H dot H solution is only capable of producing the response for a small ball.  相似文献   

20.
A series of Pd/Co3O4 catalysts were prepared by Self-Propagating High-Temperature Synthesis (SHS) method in this study, and electric field was applied for catalytic combustion of lean methane over Pd/Co3O4 catalysts at low temperature. When electric field was applied, the catalytic combustion performance of Pd/Co3O4 catalysts was greatly improved, and the application of electric field could reduce the load of active element Pd to some extent while maintaining the same efficiency. Based on experimental tests and the analysis results of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2-temperature-programmed reduction (H2-TPR) and in-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS), the mechanism of catalytic oxidation of CH4 over Pd/Co3O4 catalysts in electric field was proposed. The catalytic combustion of CH4 occurs only when the temperature is higher than 250 °C normally, but when electric field was applied, the whole process of CH4 oxidation was promoted significantly and the reaction temperature was reduced. Electric field could promote the reduction of the support Co3O4 to release the lattice oxygen, resulting in the increase of PdOx and the surface chemisorbed oxygen, which could provide more active sites for the low-temperature oxidation of CH4. Furthermore, electric field could accelerate the dehydroxylation of CoOOH to further enhance the activity of the catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号