首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
CuCeZrOx and KCuCeZrOx catalysts were synthesized and coated on the blank diesel particulate filter (DPF) substrate and a particulate matter (PM) loading apparatus was used for soot loading. The catalytic performances of soot oxidation were evaluated by temperature programmed combustion (TPC) test and characterization tests were conducted to investigate the physicochemical properties of the catalysts. The reaction mechanism in the oxidation process was analyzed with diffuse reflectance infrared Fourier transform spectroscopy. The results demonstrated that CuCeZrOx catalyst exhibited high activities of soot oxidation at low temperature and the best results have been attained with Cu0.9Ce0.05Zr0.05Ox over which the maximum soot oxidation rate decreased to 410 °C. Characterization tests have shown that catalysts containing 90% Cu have uniformly distributed grains and small particle sizes, which provide excellent oxidation activity by providing more active sites and forming a good bond between the catalyst and the soot. The low-temperature oxidation activity of soot could be further optimized due to the excellent elevated NO’s conversion rate by partially substituting Cu with K. The maximum particle oxidation rate can be easily realized at such a low temperature as 347°C.  相似文献   

2.
The research on biomass reduction of Fe2O3 was carried out by using sawdust as reductant. The direct reducing agents in the biomass magnetization process were determined by comparing various biomass pyrolysis products with the reduction degree (divalent iron content in total iron), reduction temperature range and valence change of Fe2O3 in the reduction process. The microstructure variation of Fe2O3 at different stages was also analyzed by scanning electron microscopy (SEM). Nonisothermal thermogravimetric analysis (TGA) was applied to explore the thermal reduction process. The results show that the direct reducing substances in the biomass reaction with Fe2O3 are H2 and bio-oil, and the reduction process can be divided into two steps: biomass pyrolyzing to release H2 and bio-oil, and reductive volatiles reacting with Fe2O3. The two steps are relatively independent. The kinetic of the reduction reaction follows a first-order reaction kinetic model, with 88.99 kJ/mol activation energy and 9.55 × 108 min?1 frequency factor.  相似文献   

3.
Abstract: This paper focuses on the combustion optimization to cut down NO x emission with a new strategy. Firstly, orthogonal experimental design (OED) and chaotic sequences are introduced to improve the performance of particle swarm optimization (PSO). Then, a predicting model for NO x emission is established on support vector machine (SVM) whose parameters are optimized by the improved PSO. Afterwards, a new optimization model considering coal quantity and air quantity along with the traditional optimization variables is established. At last, the operating parameters are optimized by the improved PSO to cut down the NO x emission. An application on 600MW unit shows that the new optimization model can cut down NO x emission effectively and maintain the load balance well. The NO x emission optimized by the improved PSO is lowest among some state-of-the-art intelligent algorithms. This study can provide important guides for the low NO x combustion in the power plant.  相似文献   

4.
The spinodal composition zone in Al added Fe-Mn-Al-C twinning-induced plasticity(TWIP) steels can be determined by contents of Al and C and aging temperature together, based on the thermodynamic analysis. Precipitation of ordered(FeMn)3AlC carbide by the mechanism of spinodal decomposition occurs in the C-rich and Al-rich zone with low aging temperature. Increase of aging temperature shrinks spinodal composition zone to the high Al and C contents. As a result, the precipitation of(FeMn)3AlC carbide alters from spinodal decomposition to classical nucleation-growth manner gradually. Further calculation indicates that the diffusion of Al can play a key role in determining the growth rate of(FeMn)3AlC carbide at high aging temperature.  相似文献   

5.
The B2-L21 ordering transitions in Au-Cu-Al shape-memory alloys are studied by the Monte Carlo exchange simulations, where a set of the first, the second and the third nearest-neighbor mixing potentials for Cu-Al in the Au-Cu-Al alloys are calculated from first principals using the Connolly-Williams methods. To ensure the phase stability of the β-Au-Cu-Al, the investigation includes the range of compositions Au2Cu1−x Al1+x (−0.15 ⩽ x ⩽ 0.15). The B2-L21 transition temperatures are predicted, and are in agreement with the experimental results. The atomic ordering around vacancy of the L21 structure is further discussed.  相似文献   

6.
NH3-H2O falling film absorption usually takes place with low solution flow rate in real absorption refrigeration system. An experimental study of inner vertical absorption is carried out for the consideration of air-cooling absorber. Variable working conditions are tested to evaluate the heat and mass transfer performances.The traditional evaluation method based on log-mean-temperature(concentration) difference is criticized for its lack of theoretical basis while simultaneous heat and mass transfer process occurs. A new method proposed by Kim and Infante Ferreira is modified to evaluate the experimental results with reasonable assumptions. The method is based on the derivation of coupled heat and mass transfer differential equations of NH3-H2O absorption process.The analysis of the same experimental data shows that the new method realizes better consistency with smaller error, especially in heat transfer aspect. Heat and mass transfer performance is enhanced with the increase of solution Reynolds number. Sub-cooling of inlet weak solution also has positive influence on the absorption process,which should be evaluated by the new method correctly. Two correlations are developed to evaluate both Nusselt and Sherwood numbers for the design of air-cooling absorber.  相似文献   

7.
Phase space can be constructed for N equal and distinguishable binary subsystems which are correlated in a scale-invariant manner. In the paper, correlation coefficient and reduced probability are introduced to characterize the scale-invariant correlated binary subsystems. Probabilistic sets for the correlated binary subsystems satisfy Leibnitz triangle rule in the sense that the marginal probabilities of N-system are equal to the joint probabilities of the (N −1)-system. For entropic index q ≠ 1, nonextensive entropy S q is shown to be additive in the scale-invariant occupation of phase space.  相似文献   

8.
Near infrared (NIR) light induced photothermal effect for Fe3O4 nanoparticles, contained in Pluronic F127 micelles, has been studied and it exhibits high photothermal converting efficiency. Heat is found to be rapidly generated in micelles containing Fe3O4 nanoparticles by NIR laser irradiation. Upon irradiation at 808 nm light and with mass concentration of Fe3O4 nanoparticles in 4 g/L, the micelle temperature increase is higher than 34°C for 10min irradiation. The maximum temperature of micelles containing Fe3O4 nanoparticles in 4 g/L reaches 62°C.  相似文献   

9.
This paper investigates the impacts of heating intensity and inflow wind speed on the characteristics of reactive pollutant dispersion in street canyons using the computational fluid dynamic (CFD) model that includes the transportation of NO, NO2, and O3 coupled with NO-NO2-O3 photochemistry. The results indicated that the heat intensity and inflow wind speed have a significant influence on the flow field, temperature field and the characteristics of reactive pollutant dispersion in and above the street canyon. With the street canyon bottom heating intensity increasing, NO, NO2 and O3 concentrations in street canyon are decreased. The O3 concentration reductions are even more than the NO and NO2 concentrations. Improving the inflow wind speed can significantly reduce the NO and NO2 concentrations within street canyons. But the O3 concentrations have a slight rise with wind speed increasing. The results would be useful for understanding the interrelation among reactive vehicle emissions, and provide references for urban planners.  相似文献   

10.
Electron beam welding of in situ TiB2p reinforced aluminum composites was studied. The results show that no obvious pores or cracks is presented in the weld seam. The grains in the weld seam are remarkably refined and TiB2 particles distribute much more homogeneously than that in base metal. The hardness values of fusion zone and heat affected zone (HAZ) are both increased in comparison with that of base metal. There are no interface reactions between TiB2 particle and Al matrix. This results supply the evidence that the novel TiB2p reinforced aluminum composites can be well joined with the electron beam welding.  相似文献   

11.
The swarm parametes for c-C4F8/CF4 mixtures, including the density-normalized effective ionization coefficient, drift velocity and mean energy were calculated using Monte-Carlo method with the null collision technique. The overall density-reduced electric field strength could be varied between 150 and 500 Td, while the c-C4F8 content in gas mixtures is varied in the range of 0–100%. The value of the density-normalized effective ionization coefficient shows a strong dependence on the c-C4F8 content, becoming more electronegative as the content of c-C4F8 is increased. The drift velocity of c-C4F8/CF4 mixtures is more affected by CF4. The calculated limiting field strength for c-C4F8/CF4 mixtures is higher than that of SF6/CF4. Foundation item: the National Natural Science Foundation of China (No. 50777041)  相似文献   

12.
In c-C4F8 and c-C4F8/CO2 mixtures, the swarm parameters including ionization coefficient, attachment coefficient and effective ionization coefficient were obtained at the ratio of the electric field strength to the gas density between 150–550 Td by the steady-state Townsend (SST) method. Static breakdown voltages at each ratio were also measured at the SST condition. The limiting field strengths were obtained by two methods: computing the density-normalized effective ionization coefficient as a function of the overall density-reduced electric field strength; and measuring static breakdown voltages as a function of the product of gas density and electrode separation. Good agreement was obtained by these two methods, which ensures the correctness of the former method. The limiting field strengths of c-C4F8 and c-C4F8/CO2 mixtures were compared with those of pure SF6, SF6/CO2 mixtures and pure c-C4F8. It is found that buffer gas CO2 does not reduce the limiting field strengths of c-C4F8 greatly, the limiting field strengths of c-C4F8/CO2 mixtures are higher than those of SF6/CO2 mixtures or even pure SF6, and so c-C4F8/CO2 mixtures are suggested to be possible substitutes for SF6. Foundation item: the National Natural Science Foundation of China (No. 50777041)  相似文献   

13.
Calcium silicate slag is the residue of process of pre-desilication alkali lime sintering applied in the high-alumina fly ash to extract the alumina. The quantitative phase analysis (QPA) of the calcium silicate slag has been performed by the Rietveld method based on the powder X-ray diffraction (XRD) with the aid of noncommercial software GSAS-EXPGUI. A known weight of crystalline internal standard (10% CaF2) was added to the calcium silicate slag to calculate the fraction of amorphous phase and other crystalline phases on an absolute basis. Besides, the calcium silicate slag was characterized by X-ray fluorescence (XRF) and thermo gravimetric (TG) differential scanning calorimetry (DSC) to test the QPA results and investigate its other characters. Finally, the results show that the amorphous fraction is 17.5% (hereinafter, the percentages refer to the mass fraction), and the major crystalline phases detected in the calcium silicate slag consist of 23.5% Beta-Ca2SiO4, 10.0% bredigite, 10.3% Ca3Al2O6 (C3A) and 21.6% CaCO3.  相似文献   

14.
Well-defined raspberry-like magnetic microbeads(RMMBs) as immunoassay solid carriers were prepared by chemical covalent binding between Fe3O4 magnetic microspheres and SiO2 nanoparticles. These RMMBs were not as agglomerative as nano-sized magnetie particles( 200 nm), which was an advangtage for high efficient magnetic separation. When compared to Fe3O4@SiO2core-shell magnetic microbeads(CMMBs) with smooth surface, RMMBs exhibited stronger capacity to bind biomolecules. Limit of blank(LoB) and limit of detection(LoD) of HBsAg detection using RMMBs as carriers via chemiluminiscence immunoassay(CLIA) were 0.472 and1.022 μg/L, respectively, showing a notable improvement compared with CMMBs whose LoB and LoD were 1.017 and 1.988 μg/L, respectively. All these indicated a great potential of RMMBs in immunoassay application.  相似文献   

15.
Layered solid solution material Li1.2Ni0.2Mn0.6O2 is synthesized and the AlF3 is added to improve the electrochemical performance. X-ray diffraction (XRD) results show that the Li1.2Ni0.2Mn0.6O2 samples exhibit layered characteristics. The AlF3 additive is detected by transmission electron microscope (TEM) technology. The electrochemical tests show that Li1.2Ni0.2Mn0.6O2 electrode with AlF3 added delivers better discharge capacity (240mA· h/g), first coulomb efficiency 79.2%, cyclic performance (capacity retention ratio of 100.6% after 50 cycles), and rate capacity (68mA · h/g at 10 capacity (C)) than the pristine sample. Electrochemical impedance spectroscopy (EIS) results show that the charge transfer resistance of Li1.2Ni0.2Mn0.6O2 electrode with AlF3 added increases slower than that of pristine Li1.2Ni0.2Mn0.6O2 after cycling, which is responsible for better cyclic and rate performance.  相似文献   

16.
Oxidation of white phosphor, us by peroxides to produce mono-alkyl phosphate in the alcoholic solution has been studied under non-and catalytic conditions. In this paper, the mechanism of the oxidation process was analyzed. The content of mono-alkyl phosphalte in the product is affected by different types of alcoholic solution and peroxide solvent. The result shows the availabulity of the following order for the activity of the peroxide solvent and alcoholic solutions-tert-butyl hydroperoxide>(di) benzoyl peroxide>hydroperoxide; methanol> n-butyl alcohol> phenol. Under optimized reaction conditions: n (a white phosphorus) : n( tert-butyl hydroperoxide) : n (methanol)= 1:10:12, reaction temperature 80 ℃, reaction time 2.5 h, products of 80.0% mono-alkyl phosphonates can be provided when white phosphorus undergoes oxidation by tert-butyl hydroperoxide in the methanol solutions. When Cu (I), and Cn(Ⅱ) complexes are used as catalysts, it is possible to significantly enhance the oxidation of white phosphorus with the increase in the reaction rate. Th'e order for activity of catalysts is Cu(acac)2>Cu (CH3COO)2>Cu (C3 H7COO)2:>CuI>CuCI2. Noticeably, with Cu(acac)2 as catalyst, the selectivity for mono-alkyl phusphonates can reach 95% under adequate reaction conditions.  相似文献   

17.
A direct link between band structure and the ballistic transport property of full-Heusler alloys based Co2 YZ/Al/Co2 YZ trilayers (Y = Sc, Ti, V, Cr, Mn and Fe; Z = Al, Si and Ge) has been studied by firstprinciples calculations. It is found that the transport efficiency is determined primarily by three factors related to band structure: the shape of the band crossing Fermi energy E F, the distance d of the two intersection points of Co2 YZ and Al at E F, and the absolute maximum of the energy lying in the E F-crossing band, |Emax|. The transmission coefficient distribution patterns imply that the affected factor of magneto-resistance (MR) ratio is attributed to the band features around E F. In general, an intuitively illustrated diagram is proposed to clarify the relationship between the probability of electron transition and the current magnitude.  相似文献   

18.
The multi-principal high-entropy alloys (HEAs) are promising new alloys. However, it is a challenge to screen out the suitable composition from the diverse combinations. Referring to the prototype AuCu3 with AB3-L12 structure, where it becomes a face-centered cubic (fcc) structure if element A and B are the same element, the site occupying tendencies of the elements and thermodynamic functions are predicted by using the sublattice model supported with first-principles total energy calculations. By considering the Gibbs energy of formation and the configurational entropy, the fcc HEAs in available literatures are examined, and the results of the quinary system with equal-atomic composition CoFeMnNiM and the hexbasic system with equal-atomic composition CoFeMnNiSmM are reported, respectively, where the element M is selected from the rest of the periodical table. When M=Cr, Zn, Ru, Rh, Pd, Re, Os, Ir, or Pt in the quinary systems CoFeMnNiM and when M=Ru, Pd, or Pt in the hexbasic systems CoFeMnNiSmM, respectively, the alloys are recommended to be potential fcc HEAs. The new approach opens a new way to mine the rich ores of HEAs.  相似文献   

19.
Gain and emission spectrum characteristics of Tm3+-doped telluride glass fibers pumped with 465 nm lasers are analyzed. The rate and power propagation equation groups of the fibers are solved numerically and the effects of the fiber parameters including active ion concentration, length and pump power on the gain spectra and amplified spontaneous emission (ASE) spectra are analyzed. The results show that with a pump parameter of 465 nm/200mW, a doping concentration of 2.5×1025 ion/m3 and a fiber length of 16m, the gain and ASE spectra can cover from 1.100 to 1.900 μm, and the gain and ASE power peaks can reach 52 dB and 8mW, respectively.  相似文献   

20.
Zn0.95?x Co0.05Cu x O (atomic ratio, x = 0?C8%) thin films are fabricated on Si(111) substrate by reactive magnetron sputtering method. Detailed characterizations indicate that the doped Cu ions substitute the Zn2+ ions in ZnO lattice. The doped Cu ions are in +1 and +2 mixture valent state. The ferromagnetism of the Zn0.95?x Co0.05Cu x O film increases gradually with the increase of the Cu+ ion concentration till x = 6%, but decreases for higher Cu concentration. Experimental results indicate that the increase of ferromagnetism is not owing to the magnetic contribution of Cu+ ions themselves, but owing to the enhancement of magnetic interaction between Co2+ ions, which suggests that p-type doping of Cu+ ions plays an important role in mediating the ferromagnetic coupling between Co ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号