首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Well-defined raspberry-like magnetic microbeads(RMMBs) as immunoassay solid carriers were prepared by chemical covalent binding between Fe3O4 magnetic microspheres and SiO2 nanoparticles. These RMMBs were not as agglomerative as nano-sized magnetie particles( 200 nm), which was an advangtage for high efficient magnetic separation. When compared to Fe3O4@SiO2core-shell magnetic microbeads(CMMBs) with smooth surface, RMMBs exhibited stronger capacity to bind biomolecules. Limit of blank(LoB) and limit of detection(LoD) of HBsAg detection using RMMBs as carriers via chemiluminiscence immunoassay(CLIA) were 0.472 and1.022 μg/L, respectively, showing a notable improvement compared with CMMBs whose LoB and LoD were 1.017 and 1.988 μg/L, respectively. All these indicated a great potential of RMMBs in immunoassay application.  相似文献   

2.
The research on biomass reduction of Fe2O3 was carried out by using sawdust as reductant. The direct reducing agents in the biomass magnetization process were determined by comparing various biomass pyrolysis products with the reduction degree (divalent iron content in total iron), reduction temperature range and valence change of Fe2O3 in the reduction process. The microstructure variation of Fe2O3 at different stages was also analyzed by scanning electron microscopy (SEM). Nonisothermal thermogravimetric analysis (TGA) was applied to explore the thermal reduction process. The results show that the direct reducing substances in the biomass reaction with Fe2O3 are H2 and bio-oil, and the reduction process can be divided into two steps: biomass pyrolyzing to release H2 and bio-oil, and reductive volatiles reacting with Fe2O3. The two steps are relatively independent. The kinetic of the reduction reaction follows a first-order reaction kinetic model, with 88.99 kJ/mol activation energy and 9.55 × 108 min?1 frequency factor.  相似文献   

3.
A series of Pd/Co3O4 catalysts were prepared by Self-Propagating High-Temperature Synthesis (SHS) method in this study, and electric field was applied for catalytic combustion of lean methane over Pd/Co3O4 catalysts at low temperature. When electric field was applied, the catalytic combustion performance of Pd/Co3O4 catalysts was greatly improved, and the application of electric field could reduce the load of active element Pd to some extent while maintaining the same efficiency. Based on experimental tests and the analysis results of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2-temperature-programmed reduction (H2-TPR) and in-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS), the mechanism of catalytic oxidation of CH4 over Pd/Co3O4 catalysts in electric field was proposed. The catalytic combustion of CH4 occurs only when the temperature is higher than 250 °C normally, but when electric field was applied, the whole process of CH4 oxidation was promoted significantly and the reaction temperature was reduced. Electric field could promote the reduction of the support Co3O4 to release the lattice oxygen, resulting in the increase of PdOx and the surface chemisorbed oxygen, which could provide more active sites for the low-temperature oxidation of CH4. Furthermore, electric field could accelerate the dehydroxylation of CoOOH to further enhance the activity of the catalysts.  相似文献   

4.
Electrolytic manganese residue(EMR) is generated from electrolytic manganese metal(EMM) industry, and its disposal is currently a serious problem in China.The EMR were calcined in the interval 100—900℃to enhance their pozzolanic activity and characterized by the differential thermal analysis-thermogravimetry(TGDTA), X-ray diffraction(XRD),infra-red(IR) and chemical analysis techniques with the aim to correlate phase transitions and structural features with the pozzolanic activity of calcined EMR.Prom the phase analysis and compressive strength results,it is found that the EMR calcined within 700—800℃had the best pozzolanic activity due to the decomposition of poorly-crystallized CaSO4 under the reducing ambient created by the decomposition of(NH42SO4.The appearance of reactive CaO mainly contributes to the good pozzolanic activity of EMR calcined within 700—800℃.The crystallinity of Mn3CO4 increases leading an unfavourable effect on the pozzolanic behaviour of EMR calcined at 900℃.The developed pozzolanic material containing 30%(mass fraction) EMR possesses compressive strength properties at a level similar to 42.5# normal Portland cement,in the range of 41.5—50.5 MPa.Besides,leaching results show that EMR blend cement pastes have excellent effect on the solidification of heavy metals.  相似文献   

5.
CuCeZrOx and KCuCeZrOx catalysts were synthesized and coated on the blank diesel particulate filter (DPF) substrate and a particulate matter (PM) loading apparatus was used for soot loading. The catalytic performances of soot oxidation were evaluated by temperature programmed combustion (TPC) test and characterization tests were conducted to investigate the physicochemical properties of the catalysts. The reaction mechanism in the oxidation process was analyzed with diffuse reflectance infrared Fourier transform spectroscopy. The results demonstrated that CuCeZrOx catalyst exhibited high activities of soot oxidation at low temperature and the best results have been attained with Cu0.9Ce0.05Zr0.05Ox over which the maximum soot oxidation rate decreased to 410 °C. Characterization tests have shown that catalysts containing 90% Cu have uniformly distributed grains and small particle sizes, which provide excellent oxidation activity by providing more active sites and forming a good bond between the catalyst and the soot. The low-temperature oxidation activity of soot could be further optimized due to the excellent elevated NO’s conversion rate by partially substituting Cu with K. The maximum particle oxidation rate can be easily realized at such a low temperature as 347°C.  相似文献   

6.
In this study, sub-micrometer LiFePO4 particles with high purity and crystallinity were synthesized using supercritical hydrothermal method as the cathode material for lithium ion batteries. Experimental results show that templates and calcination time have significant impacts on the purity, particle size and morphology of LiFePO4 particles. The as-prepared LiFePO4 particles using polyvinyl pyrrolidone (PVP) template with additional one hour calcination at 700°C exhibit characteristics of good crystallinity, uniform size distribution, high capacity and cycling performance. The specific discharge capacities of 141.2 and 114.0mA·h/g were obtained at the charge/discharge rates of 0.1 and 1.0 C, respectively. It retained 96.0% of an initial capacity after 100 cycles at 1.0 C rate. The good electrochemical performance of the as-synthesized material is attributed to the synergistic factors of its reasonable particle size and surface areas and high crystallinity.  相似文献   

7.
Layered solid solution material Li1.2Ni0.2Mn0.6O2 is synthesized and the AlF3 is added to improve the electrochemical performance. X-ray diffraction (XRD) results show that the Li1.2Ni0.2Mn0.6O2 samples exhibit layered characteristics. The AlF3 additive is detected by transmission electron microscope (TEM) technology. The electrochemical tests show that Li1.2Ni0.2Mn0.6O2 electrode with AlF3 added delivers better discharge capacity (240mA· h/g), first coulomb efficiency 79.2%, cyclic performance (capacity retention ratio of 100.6% after 50 cycles), and rate capacity (68mA · h/g at 10 capacity (C)) than the pristine sample. Electrochemical impedance spectroscopy (EIS) results show that the charge transfer resistance of Li1.2Ni0.2Mn0.6O2 electrode with AlF3 added increases slower than that of pristine Li1.2Ni0.2Mn0.6O2 after cycling, which is responsible for better cyclic and rate performance.  相似文献   

8.
AbstractIn order to explore the production of hydroxyl radical(·OH)in a confined space,a novel ozone-light irradiation system is constructed in this study,and the·OH radical is measured by spin-trapping electron spin resonance(ESR)method in which 5,5-dimethyl-1-pyrroline-N-oxide(DMPO)is selected as the spin-trap.Several influence factors including the light intensity,the irradiation time and DMPO mass concentration are discussed. The results show that in this experimental system,with DMPO mass concentration of 1g/L and the irradiation time of 30 min,the·OH radical can be best captured.Besides,both wavelength and intensity of the irradiation light could effect the generation of·OH radical.These results are of great importance to further study the sterilization effect of·OH radical in confined space.  相似文献   

9.
ZnO nanostructures were prepared in aqueous solution by microwave hydrothermal synthesis. Xray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were used to characterize ZnO nanostructures (ZNs). The effects of pH, reaction temperature and reaction time on yield of ZnO were investigated. The yield of ZnO increased significantly with the increase of pH value, reaction temperature and reaction time. High yield and well crystallinity of ZNs could be obtained at 120°C for 60min by microwave hydrothermal synthesis. The spherical and rugby-like ZNs were obtained at 120°C without triethanolamine (TEA) and with TEA (mass ratio, $r = m_{Zn^{2 + } }$ : m TEA = 1: 1), respectively. The concentration of Zn(OH) 4 ?2 ions in the reaction solution and TEA had an important effect on the nucleation and morphology of ZnO nanostructures. Mechanism for the formation of ZnO nanostructures was proposed.  相似文献   

10.
The experimental system of heat loss of all-glass evacuated solar collector tubes (evacuated tube) is firstly designed and constructed, which uses electric heater as thermal resource. The equilibrium temperatures are less than ±1℃ during the test, and the temperature differences of up/middle/low node in the tube are less than 1 ℃, 3 ℃, and 7℃ respectively. The heat loss of evacuated tube increases about 2.7% with vacuum state of 0.01-1 mPa, and it has the best performance at tube temperature of 20-280℃. The invalidation tube (> 200 mPa) has the biggest heat loss that increases linearly with the tube temperature. The evacuated tubes with the vacuum of 0.01-1 mPa are suitable for most solar adsorption refrigeration.  相似文献   

11.
以CdIn2S4为光催化剂,钨灯模拟可见光,探讨其对活性染料亚甲基蓝的光催化降解过程.考察了光照时间、催化剂用量、亚甲基蓝的初始浓度、反应体系的pH值和温度以及光强对光催化过程的影响.结果表明:对于4mg/L的亚甲基蓝溶液,200W钨灯照射下,CdIn2S4的用量为0.04g/L,pH为3.0,1.5h内其降解率可达97.83%.温度对反应影响很小.  相似文献   

12.
The influence of soaking temperature on microstructure of high temperature multi-pass compression deformation for two low carbon steels (steel A: w C = 0.032% and w Mn = 0.25%; steel B: w C = 0.165% and w Mn = 0.38%) is studied on the thermal-mechanical simulator in order to rationalize the hot-rolling schedule of low-carbon steel and to promote the low-temperature heating technology. The results show that the microstructures of steel A are almost not affected by reducing soaking temperature, but the acicular ferrite forms in steel B when the soaking temperature is reduced from 1 200 to 1 170°C, due to its smaller initial austenite grain size according to recrystallization kinetics theory.  相似文献   

13.
This paper investigates the impacts of heating intensity and inflow wind speed on the characteristics of reactive pollutant dispersion in street canyons using the computational fluid dynamic (CFD) model that includes the transportation of NO, NO2, and O3 coupled with NO-NO2-O3 photochemistry. The results indicated that the heat intensity and inflow wind speed have a significant influence on the flow field, temperature field and the characteristics of reactive pollutant dispersion in and above the street canyon. With the street canyon bottom heating intensity increasing, NO, NO2 and O3 concentrations in street canyon are decreased. The O3 concentration reductions are even more than the NO and NO2 concentrations. Improving the inflow wind speed can significantly reduce the NO and NO2 concentrations within street canyons. But the O3 concentrations have a slight rise with wind speed increasing. The results would be useful for understanding the interrelation among reactive vehicle emissions, and provide references for urban planners.  相似文献   

14.
Direct electrochemical extraction of Ti5Si3 from pressed cathode pellets comprising of powdered Ti/Sicontaining metal oxide compounds was investigated by using molten salt electro-deoxidation technology.Three groups of mixtures including TiO2 mixed with SiO2,Ti-bearing blast furnace slag(TBFS) mixed with TiO2, and TBFS mixed with high-titanium slag(HTS) were prepared at the same stoichiometric ratio(Ti:Si=5:3) corresponding to the target composition of Ti5Si3,and used as the starting materials in this experiment,respectively. The pressed porous cylindrical pellet of the Ti/Si-containing compounds served as a cathode,and two different anode systems,i.e.,the inert solid oxide oxygen-ion-conducting membrane(SOM) based anode system and graphite-based anode system were used contrastively.The electrochemical experiment was carried out at 900-1050℃and 3.0-4.0 V in molten CaCl2 electrolyte.The results show that the oxide components were electro-deoxidized effectively and Ti5Si3 could be directly extracted from these complex Ti/Si-containing metal oxide compounds.  相似文献   

15.
Red mud-fly ash based cementitious material mixed with different contents of oil shale calcined at 700°C is investigated in this paper. The effect of active Si and Al content on the solidification of Na+ during the hydration process is determined by using X-ray diffraction (XRD), 27Al and 29Si magic-angle-spinning nuclear magnetic resonance (MAS-NMR), infrared (IR), scanning electronic microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It is shown that the content of oil shale has a remarkable effect on the solidified content of Na+. The hydration process generates a highly reactive intermediate gel phase formed by co-polymerisation of individual alumina and silicate species. This kind of gel is primarily considered as 3D framework of SiO4 and AlO4 tetrahedra interlinked by the shared oxygen atoms randomly. The negative charges and four-coordinated Al inside the network are mainly charge-balanced by Na+. The solidifying mechanism of Na+ is greatly attributed to the forming of this kind of gel.  相似文献   

16.
The processing parameters and refining mechanism of Mg-Al alloy treated with a newly developed carbon inoculant under different conditions were investigated experimentally in this work. Results show that the finest ??-Mg grain in AZ91D alloy can be obtained after processing at about 740°C, and the average grain size of ??-Mg grain decreases from about 180.4 to 85.6 ??m by adding mass fraction w in = 1% inoculant into melt. However, no evident refinement was achieved with excessive inoculant for Mn-free Mg-9Al alloy. Scanning electron microscope (SEM) photo, energy dispersive spectroscopy (EDS) analysis on the Mn-contained intermediate phase and differential scanning calorimetry (DSC) results indicate that Mn element plays an important role in the heterogeneous nucleation of ??-Mg grain. In the early stage of solidification, Al-Mn-C compound particles formed on the surface of Al4C3 nano-particles should be the potential nuclei for primary ??-Mg and probably responsible for the grain refinement achieved in the carbon inoculation process.  相似文献   

17.
A new type of benzene adsorption material was prepared by using the airtight heat treatment method. This method can directly transform the organic impurities of the activated alumina waste into carbon with adsorption capability. The microstructure and carbon content of materials were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), BET (Brunauer Emmett Teller) surface area analysis and elemental analysis. The influences of heat treatment temperature on the properties of the composite materials were discussed. The benzene adsorption capability of the material was investigated. The experimental results show that the optimal heat treatment process condition is airtight heating at 400°C for 2 h. The resulting sample has carbon mass fraction of 3.57%, specific surface area of 234.70m2/g, pore volume of 0.41m3/g, and average pore size of 6.59 nm. The samples show excellent benzene adsorption capability with an adsorption rate of 21.80%.  相似文献   

18.
The spinodal composition zone in Al added Fe-Mn-Al-C twinning-induced plasticity(TWIP) steels can be determined by contents of Al and C and aging temperature together, based on the thermodynamic analysis. Precipitation of ordered(FeMn)3AlC carbide by the mechanism of spinodal decomposition occurs in the C-rich and Al-rich zone with low aging temperature. Increase of aging temperature shrinks spinodal composition zone to the high Al and C contents. As a result, the precipitation of(FeMn)3AlC carbide alters from spinodal decomposition to classical nucleation-growth manner gradually. Further calculation indicates that the diffusion of Al can play a key role in determining the growth rate of(FeMn)3AlC carbide at high aging temperature.  相似文献   

19.
This paper designs and fabricates CeO2 nanoparticles on a large scale by hydrolysis and oxidation of cerium carbide. The electrochemical supercapacitor behavior of CeO2 nanoparticles was investigated. The nickel foam (NF) supported CeO2 nanoparticles show a high areal capacitance of 119 mF/cm2, demonstrating a strong synergistic effect between NF and CeO2 nanoparticles. The high capacitance of the CeO2/NF nanoparticles is possibly due to an improved conductivity by NF and a better utilization of CeO2 nanoparticles.  相似文献   

20.
Au nanoparticles capped by hexadecanethiol and dodecanethiol were chemically synthesized. The characteristics of electrical conductivity for the capped nanoparticles dissolved in chloroform and toluene solvents were investigated. The electrical conductivity of the samples is conspicuously Au nanoparticle concentration dependent.The results show that a rapid conductivity increases when the nanoparticle concentration increases from low value to a moderate value of 5.47 g/L and 11.22 g/L, which is capped by hexadecanethiol and dodecanethiol in chloroform solvent, and 2. 77 g/L and 7. 88 g/L in toluene solvent. The room-temperature dc conductivity σdc of Au na noparticle capped by hexadecanethiol is smaller than that capped by dodecanethiol in the whole range of Au nanoparticle concentrations. The conductivity of Au nanoparticle suspensions increases almost linearly in the temperature range in above two solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号