首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
南洞庭(胜天)特大桥主桥承台为27.8m×44.8m×7m倒矩形结构,单个承台混凝土总方量为8 184.5m~3,单次最大浇筑方量为2 338m~3,为大体积混凝土。其水化热大,绝热温升高,温度裂纹预防及控制难度大。施工时,通过优化配合比设计、减薄浇筑分层、加强散热效率、降低混凝土的入模温度、全蓄水的保温养生等一系列措施及方法,有效地消除了温度裂纹的产生。  相似文献   

2.
青海省哇加滩黄河特大桥主桥为(104+116+560+116+104)m钢-混叠合梁斜拉桥,承台长42m、宽25.5m、高6m,为大体积混凝土结构;桥址区气温垂直分布,日夜温差较大。为避免该桥承台表面出现大面积的温度裂缝,对承台大体积混凝土施工进行温度控制。针对桥址气候特点、承台的特殊位置等因素,从原材料、混凝土配合比等方面控制混凝土入模温度和水化热总量;采用有限元软件建立承台1/4模型,根据计算结果合理布置冷却水管、制定保温方案等;通过在混凝土内布设温度传感器,对施工过程进行温度监控,并根据温度数据及时调整保温和水化热排出措施、调整混凝土内外温差。采取以上措施,承台施工完成时,未发现大面积的温度裂缝,且混凝土的温度峰值和内外温差均在规范允许值之内。  相似文献   

3.
平塘特大桥为(249.5+2×550+249.5)m三塔双索面叠合梁斜拉桥,中塔承台于冬季施工,环境温度较低且天气变化剧烈、冷击效应明显。为避免在施工期间出现危害性裂缝,对承台大体积混凝土进行了温度控制。中塔承台分3次浇筑,施工过程中,采用了合理的混凝土配合比;对入模温度进行严格控制;在混凝土外部搭设保温棚,采用蒸汽养生等保温措施;内部设置了冷却水系统进行降温;表面、底面配制了防裂钢筋网。采用有限元软件MIDAS计算承台混凝土温度场和应力场,并在承台内部布置温度测点,对混凝土温度进行全程监测。结果表明:实测温度场的变化趋势与计算结果吻合较好,主要温度场和应力场指标均符合规范要求,大体积混凝土表面在整个浇筑养护期间均未出现明显有害裂缝。  相似文献   

4.
宜昌庙嘴长江大桥大江桥为(250+838+215)m悬索桥,桥塔为C50钢筋混凝土框架结构,塔柱根部5m范围实心段为大体积混凝土结构。为避免桥塔施工期间出现早期裂纹,确保混凝土施工质量,对桥塔实心段混凝土进行温度控制。采用有限元软件建立承台及塔座、塔柱实心段结构有限元模型,计算大体积混凝土施工和养护过程中的温度场和应力场,依据计算结果,在施工方案中拟定温度控制指标值,确定温度控制措施及控制方案;在施工过程中,根据温度监测的实测结果,调整、完善温控方案。控制结果表明:采取的温控措施有效降低了混凝土养护过程中内部及其表面的温度应力,避免了施工期间出现早期裂纹的风险,确保了混凝土施工质量。  相似文献   

5.
通过对大体积混凝土产生裂缝的原因进行分析,结合禹门口黄河公路大桥主桥施工现场的实际情况和以往多个大体积混凝土项目的施工经验,提出了优化混凝土配合比初凝时间、对混凝土表面进行保温养护、控制混凝土浇筑温度等一系列措施。在第一个承台分层浇筑过程中,合理布置冷却水管,埋设测温元件,对整个施工过程进行全面监控,并整理分析测量数据,反馈施工过程中存在的问题,及时调整温控措施并运用到第二个承台施工中,有效控制了禹门口黄河公路大桥主桥大体积承台混凝土有害裂缝的产生。  相似文献   

6.
罗超云  李志生  周立 《公路》2012,(7):101-106
嘉绍大桥处于海洋环境,承台为深埋式,对混凝土耐久性要求高。主桥单个承台C30混凝土方量近8 000m3。通过对承台大体积混凝土配合比优化、原材料控制、浇筑过程控制及混凝土养护等方面进行详细分析和总结,并通过实时的温度监测数据分析,达到了海洋环境下高性能超大体积混凝土在取消冷却水管的条件下保证温控质量的目标。  相似文献   

7.
洪滨 《中外公路》2011,31(4):157-161
水盘高速公路北盘江特大桥为5×30+82.5+220+290+220+82.5+7×30 m预应力混凝土空腹(斜腿)式连续刚构,主跨290 m按常规高标号混凝土(C55)施工目前属世界第一.主墩承台为28 m×28 m×5m,属典型的大体积混凝土块体,其所处地理位置环境复杂,昼夜温差极大,在施工中,对大体积混凝土的温度...  相似文献   

8.
郑州黄河公铁两用桥技术创新   总被引:6,自引:5,他引:1  
郑州黄河公铁两用桥在桥式、结构及施工方法方面进行了诸多创新。该桥主桥分2联布置,第1联为(120+5×168+120)m的六塔连续钢桁结合梁斜拉桥,第2联为5×120 m的连续钢桁结合梁桥。主桥上层桥面为6车道公路,下层为双线高速铁路。上、下层桥面宽度相差悬殊,主桥上部结构采用新型斜桁结构(三片主桁、边桁斜置)。公路桥面采用预制混凝土板与钢主桁直接结合,无纵横梁、无平联。铁路桥面首次采用多横梁、无纵梁正交异性整体钢桥面。桥塔采用钢结构,塔、梁固结,单索面斜拉索锚固在主桁的上弦杆内。该桥采用顶推法施工钢桁梁。  相似文献   

9.
由于冬季大体积承台施工过程中,混凝土水化热反应,承台内外温差较大,冷却管入水温度难以控制,很容易产生较大的应力从而导致裂缝的产生。该文通过现场高频率温度监控和高密度的测点布置,使用有限元软件精细化仿真模拟承台大体积混凝土施工的湿度变化过程,计算结果与实测温度变化趋势一致,得出入水温度每降低5℃,峰值温度降低的百分比为最大1.60%,而冷却水管附近最大拉应力提升的百分比为4.98%,入水温度对冷却管附近混凝土拉应力的敏感度大于温度峰值;再结合自循环水箱,棉被保温等合理的温控措施;最后达到设定的控制目标,验证温控方案合理。建议冬季施工的大体积承台,冷却管入水温度应不低于5℃,以10~25℃为宜,承台四周拆模时间应控制为4~5 d,拆模后立即对其进行保温养护,确保承台施工质量。  相似文献   

10.
富阳鹿山大桥主墩深水承台施工技术   总被引:1,自引:0,他引:1  
富阳鹿山大桥主桥为(118+256+118)m双塔单索面预应力混凝土斜拉桥,桥塔墩承台为圆形,直径22 m,高5.5 m,承台底面在设计水位以下达15 m,采用圆形双壁钢套箱围堰施工方案.该围堰不设内支撑,兼有挡水和模板功能.围堰在工厂内竖向分节、环向分块制作,车运至墩位处拼装,用千斤顶整体下放首节围堰自浮于水中,再对称安装剩余单元;利用定位桩精确定位,长臂挖机配合吸泥机均匀下沉围堰至设计标高.封底混凝土不设置隔仓,采用垂直导管法一次性灌注.针对大体积承台,从配合比优化、混凝土输送方式、浇筑顺序、温度监控及养护等方面采取控制措施保证了承台大体积混凝土施工质量.  相似文献   

11.
宁波舟山港主通道北通航孔桥为(125+260+125)m的钢-混凝土混合梁连续刚构桥。主墩承台下设13根?3.5 m/3.0 m变径钻孔灌注桩,承台采用40 m×22.6 m×8 m的永久性防撞钢套箱施工,防撞钢套箱下放后进行封底混凝土施工。利用MIDAS Civil软件建立防撞钢套箱结构整体有限元模型,对承台施工阶段不同工况下封底混凝土受力进行计算分析,确定主墩承台封底采用厚度为2.21 m的C30混凝土。封底混凝土施工采用集料斗法,施工时,搭设封底浇筑平台、设置布料点,逐点首封,按照“由外向内、由中心向四周”的顺序灌注封底混凝土。在舟山外海恶劣施工条件下,承台施工期间封底结构安全且无渗水现象,取得了良好的施工效果。  相似文献   

12.
河南信阳河大桥为独塔双索面斜拉桥 ,主塔承台混凝土总量为 386m3 。该文分析了混凝土裂缝产生的机理 ,进行了主塔承台大体积混凝土的温度应力计算 ,提出了防止温度裂缝产生的混凝土施工及温度控制措施。  相似文献   

13.
为了研究矩形钢管混凝土组合桁梁桥这种主梁由矩形钢管混凝土桁架和混凝土桥面板组成的新桥型的力学性能,以中国首座矩形钢管混凝土组合桁梁桥为对象开展了实桥试验。试验桥孔跨布置为24 m+40 m+24 m,结构体系为连续刚构。试验采用400 kN加载卡车3辆,共进行了3个荷载工况12个加载步的加载,对试验桥的整体力学性能、矩形钢管混凝土杆件力学性能以及桥面板有效宽度进行了研究。试验结果表明:在荷载效率为1.90~3.05的超载工况下各控制杆件的轴力-应变及荷载-位移实测数据线性关系显著,试验桥在加载过程中始终处于良好的弹性工作状态;实测受压钢管混凝土下弦杆钢管与管内混凝土荷载的分配符合二者的轴向抗压刚度比例关系;由于矩形钢管混凝土管壁内设置了纵向PBL加劲肋(开孔钢板加劲肋),其在开孔区域形成混凝土榫,大幅提高了矩形钢管混凝土杆件的抗拉刚度,使其可达受压杆件刚度的80%;两主桁之间桥面板实测有效宽度与既有文献研究结果符合良好,且剪力滞效应在节点处比节间处表现得更为明显。  相似文献   

14.
武汉天兴洲公铁两用长江大桥主桥为(98 196 504 196 98)m双塔三索面钢桁斜拉桥,主梁为3片主桁的板桁结合钢桁梁,上层为6车道公路,下层为双线客运专线、双线Ⅰ级铁路。其中铁路桥面采用纵横梁体系的混凝土板结合道碴桥面。介绍铁路混凝土板结合桥面系模型试验的结构设计及试验方法。  相似文献   

15.
闵浦大桥边跨采用组合式桁架结构,腹杆采用钢结构,上、下弦杆采用混凝土内包劲性钢骨架。该文介绍了该桥边跨钢桁梁施工流程及其顶升控制。  相似文献   

16.
大跨度连续钢桁架-混凝土组合梁桥在公路桥梁上应用的实例极少,且有关大跨组合结构桥梁施工监控及相关问题的研究还处在探索阶段.依托某连续桁架组合梁桥工程,采用了新颖的抗拔不抗剪剪力键,并对传统的混凝土桥面板浇筑顺序进行了调整,极大地提高了负弯矩混凝土的抗裂性能.桥梁施工阶段的拆架跨中位移量、跨中混凝土预压应力、桥面板与钢梁滑移量是本桥监测的重点内容,为实现成桥状态设计目标,精确而有效的施工监控至关重要.将监测结果与有限元分析软件理论数据进行对比,分析判断桥梁施工过程中的安全性,确保全桥施工的顺利进行.  相似文献   

17.
本文对寒区中等跨径连续钢箱梁桥,分别按7.5cm沥青混凝土铺装方案和10cm水泥混凝土+10cm沥青混凝土组合铺装方案进行设计,分析钢箱梁用钢量指标随桥梁跨径、箱梁梁高的变化规律,研究寒区钢箱梁桥采用组合铺装后,钢箱梁用钢量指标变化情况,为寒区中等跨径钢箱梁桥的设计提供参考。  相似文献   

18.
香槐六路漏河大桥是一座城市主干道双层特大桥,主桥采用六跨57.5 m+71 m+120 m+120 m+70 m+57.5 m变高连续钢桁梁结构,桥梁采用双层桥面,上层桥面为机动车道,宽度25 m,下层桥面为人行通道,宽度11 mo该桥具有大跨度、宽桁架、变高连续、双层桥面等特点,主要介绍桥梁设计方案的比选经过,最终确定采用双层变高连续钢桁连续梁结构,该方案结构可靠、功能适用、构造简洁,为今后类似桥梁的方案设计提供借鉴和参考。  相似文献   

19.
铁路桥钢桥面铺装主要作用是保护钢桥面免受道砟的磨损与雨水的侵蚀,为提高铁路钢桥面铺装的使用寿命,减少中期维修,对铁路钢桥面超高性能混凝土(UHPC)组合桥面铺装体系进行研究。以沪通长江大桥主航道桥为背景工程,制作带UHPC铺装层的正交异性钢桥面板单U肋梁模型进行抗水渗性能试验,并结合实桥进行UHPC组合桥面铺装体系设计和施工工艺研究。结果表明:UHPC组合桥面体系在无裂缝时抗渗性能满足使用要求,可有效保护钢板免受雨水侵蚀,带裂缝的组合桥面,运营过程中裂缝会逐渐闭合,阻止雨水进一步渗透,具有较强的抗渗能力储备;为避免新浇混凝土开裂,UHPC应严格按规范流程施工,施工温度宜选择15~25℃,浇筑后应及时覆膜保湿养护。  相似文献   

20.
武汉二七长江大桥6×90m钢-混组合连续梁设计   总被引:1,自引:0,他引:1  
张先蓉  胡佳安 《世界桥梁》2012,40(4):11-14,25
为满足武汉二七长江大桥非通航孔深水区行洪、景观等要求,采用结构简单、受力合理及施工便捷的设计思路对非通航孔深水区桥梁进行设计。该深水区桥梁采用6×90m钢-混组合连续梁结构,主梁由下层的钢槽梁和上层的预制混凝土桥面板通过剪力钉连接而成。综合考虑施工环境及多种方法的优缺点,并通过计算确定采用升降主墩及临时墩支承高度的方法降低支点负弯矩区混凝土桥面板拉应力;预制桥面板按带裂缝工作的钢筋混凝土构件设计,横向为整体;从便于施工的角度细化了钢槽梁的构造;桥面板与钢槽梁间采用纵向结合方式,剪力钉数量根据受力变化范围分段布置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号