首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
改进的疲劳裂纹扩展率模型及其参数估算方法   总被引:1,自引:0,他引:1  
王芳  陈峰落  崔维成 《船舶力学》2010,14(3):252-262
疲劳裂纹扩展率曲线是任何基于裂纹扩展理论的疲劳寿命预报方法的基本疲劳特性。论文作者们提出了一种改进的疲劳裂纹扩展率模型,它可以解释金属疲劳试验中观察到的各种现象。为了便于工程应用,文中也给出了如何利用除裂纹扩展试验以外的其它试验结果来估算该模型参数的方法。文中还对恒幅载荷下该模型及其参数估算方法对HTS-A钢的适用性进行了分析,分析结果将为利用该模型预报由HTS-A型钢制成的海洋结构物的疲劳寿命提供基础。  相似文献   

2.
为了用解析方法合理地描述疲劳裂纹扩展的三个阶段,提出了一种新的疲劳裂纹扩展模型——正切模型。该模型驱动力使用应力强度因子幅值K,能够描述裂纹扩展的三个阶段,且只有四个参数需要确定。通过非线性拟合确定疲劳裂纹扩展正切模型中的四个参数。研究了门槛值Kth和失稳值Kf与应力比R的关系,以及四个参数对裂纹扩展速率的影响。最后比较了试验值、九参数模型和正切模型在疲劳裂纹扩展速率曲线和裂纹扩展长度变化曲线等方面的差别,发现正切模型结果与试验数据较为吻合。该模型描述的裂纹扩展长度变化曲线能够较好地用于疲劳寿命评估。  相似文献   

3.
对于复杂载荷作用下的船舶及海洋工程结构物,至今仍没有一个统一的疲劳寿命预报模型能够很好地解释载荷次序效应的影响.单峰过载下的疲劳裂纹扩展问题是研究变幅载荷疲劳问题的基础,伴随单峰过载将出现疲劳裂纹扩展迟滞现象.课题组所提出的广义疲劳裂纹扩展模型能够定量地预报出过载迟滞这一现象,通过确定过载参数β的大小,能够有效地衡量出过载迟滞的程度.在此基础上,文章将广义的疲劳裂纹扩展模型进行了进一步的修正,通过引入一个幂指数项,使得模型能够更好地反映出过载后疲劳裂纹扩展速率由迟滞的最低点逐渐恢复到过载前的水平.文中将课题组所发展的广义疲劳裂纹扩展率模型应用于实际的单峰过载疲劳问题中,并引用铝合金D16Cz的单峰过载试验数据与模型预报结果进行了比较,结果发现,经修正的广义疲劳裂纹扩展模型能够更好地反映出单峰过载后的疲劳裂纹扩展情况.  相似文献   

4.
文章改进了一种疲劳裂纹扩展模型,将原来的模型描述范围扩展到疲劳裂纹扩展的第三个阶段,并给出了一种确定模型中β值的方法。文中还将该模型与另外一种双参数疲劳裂纹扩展模型进行了比较,两种模型都通过7075-T6铝在过载作用下的疲劳试验数据进行了验证。最后,给出了比较结果,以及对两种模型应用的建议。  相似文献   

5.
复杂载荷作用下潜艇结构疲劳裂纹扩展预报方法   总被引:4,自引:0,他引:4  
张鼎  黄小平 《舰船科学技术》2012,34(2):11-16,21
统一疲劳裂纹扩展模型是课题组在McEvily模型基础上提出来的,它将疲劳裂纹扩展的3个扩展区域统一起来,并能解释更多的疲劳试验现象.本文介绍了统一疲劳裂纹扩展模型的基本表达式.将此模型与焊缝焊趾表面裂纹应力强度因子的计算方法结合起来,探讨复杂载荷作用下潜艇结构疲劳裂纹扩展预报方法.将服从Weibull分布的随机载荷系列编排为升序、降序载荷谱及随机载荷谱,预报潜艇锥柱结合壳焊缝焊趾处表面裂纹在3种载荷谱下的疲劳裂纹扩展情况,并分析随机载荷谱下载荷次序效应及初始裂纹尺寸对疲劳裂纹扩展行为的影响.结果表明,载荷次序效应对潜艇结构疲劳寿命的影响很明显,且合理的确定初始裂纹尺寸对潜艇结构的疲劳寿命预报是非常重要的.  相似文献   

6.
陈峰落  王芳  崔维成 《船舶力学》2010,14(12):1349-1360
精确预报金属结构的疲劳对确保结构安全及指导结构设计与维修具有重要的意义.作者们基于McEvily模型提出了一个改进的统一疲劳裂纹扩展速率模型,其将疲劳裂纹扩展的三个扩展区域统一起来,并能解释更多的疲劳试验现象.文中对该模型进行了详细阐述,同时对模型参数的工程预报方法进行了讨论.为了进一步检验本模型的可靠性,还对不同载荷比下各种材料疲劳裂纹扩展率的预报结果与实验结果进行了对比,对比结果证明了该模型的准确性及其在常幅载荷下对不同材料的普遍适用性.  相似文献   

7.
大结构模型低周疲劳试验周期较长,成本高,一般情况只能通过一只或少量的模型研究裂纹的形成机理和扩展规律,确定裂纹的形成寿命和扩展寿命.文章通过开展裂纹尖端的应力场研究,提出了一种在大结构模型中预制多种裂纹类型同时进行低周疲劳试验的并行疲劳试验方法.利用该方法开展了锥柱结合壳结构模型疲劳试验,得到了该模型的多种裂纹类型的裂纹形成寿命和裂纹扩展寿命试验结果,验证了并行疲劳试验方法的可行性和可信性.  相似文献   

8.
张学忠  王芳  杨露  王旻琦  郭永欢 《船舶工程》2021,43(6):103-108,127
准确的裂纹扩展率模型是结构疲劳寿命预报的基础.考虑单个循环内裂纹长度变化的小时间域裂纹扩展率模型,能够在复杂载荷条件下计算任意微小时间域内的裂纹扩展增量.文章首先介绍了一种可用于水下耐压结构疲劳寿命分析的小时间域蠕变疲劳裂纹扩展模型,并对模型参数的敏感性进行了分析.然后选取其中几个参数作为随机变量,运用JC法、EMORM法和Monte-Carlo法计算该模型在不同裂纹长度的裂纹扩展速率的可靠度.  相似文献   

9.
海洋钢结构疲劳裂纹扩展预报单一扩展率曲线模型   总被引:3,自引:0,他引:3  
采用基于疲劳裂纹扩展的疲劳寿命预报方法对海洋钢结构的安全寿命进行评估,首先要解决变幅载荷作用下的裂纹扩展率问题,其次是复杂应力场中的应力强度因子计算问题.文章将裂纹扩展率单一曲线模型结合焊趾表面裂纹应力强度因子的计算方法来探讨复杂载荷作用下海洋钢结构的疲劳寿命预报问题.裂纹扩展率单一曲线模型的思想是将任意载况下的应力强度因子等效到R=0的应力强度因子,并假定超载不影响材料的裂纹扩展率,而是使等效应力强度因子幅减小.使得复杂载荷下的疲劳寿命预报也仅需要对应于R=0时的裂纹扩展率材料常数,从而解决复杂载荷下裂纹扩展率材料常数的确定问题.文中给出了适合于海洋钢结构的裂纹扩展率曲线,焊趾表面裂纹应力强度因子以及残余应力引起的应力强度因子的计算方法.  相似文献   

10.
球扁钢被广泛用于船舶和桥梁等钢结构,掌握其疲劳裂纹扩展规律对准确预报结构疲劳寿命有着重要的意义。该文基于表面裂纹名义开口位移(NCOD)的测量数据,对全尺寸船用球扁钢三维疲劳裂纹形状进行了预报;并利用二维Paris公式,采用有限元数值分析方法,对裂纹扩展过程进行了预报;最后通过船舶节点的疲劳试验,验证了该疲劳裂纹预报方法的可行性。文中提出的疲劳裂纹扩展预报方法可为球扁钢的失效判据提供参考依据。  相似文献   

11.
疲劳裂纹扩展模型中表征裂纹闭合水平参数的确定   总被引:1,自引:1,他引:0  
借助7075-T 6铝合金、6013铝合金以及0.45w t%碳钢的疲劳试验数据,结合上述材料的力学性能参数,通过非线性最小平方拟合方法,研究了表征裂纹闭合水平参数k对疲劳裂纹扩展率的影响。研究结果表明,对于宏观裂纹范围内的疲劳裂纹扩展,参数k只要大于某个值就对疲劳裂纹扩展率无影响;而对于小裂纹阶段的疲劳裂纹扩展,参数k对疲劳裂纹扩展率的影响较明显,因此参数k的大小主要取决于小裂纹扩展数据。依据0.45w t%碳钢疲劳试验数据,相应参数k的建议值为6 000m-1。  相似文献   

12.
基于疲劳裂纹扩展率单一曲线模型的疲劳寿命预测   总被引:2,自引:1,他引:1  
施伟  黄小平  崔维成 《船舶力学》2008,12(2):264-271
基于疲劳裂纹扩展率单一曲线模型对铝合金D16CzATWH等在不同加载次序下的疲劳裂纹扩展行为进行了预测.通过与已有文献试验数据和NASGRO条带屈服模型的计算结果进行比较,发现本模型的预测结果和试验数据符合得较好,并能解释NASGRO模型不易解决的过载迟滞效应.同时该模型需要的参数相对较少且易于确定,因此该模型有良好的工程适用性.模型中载荷效应指数与过载频率以及过载幅度相关,它的取值对预测结果有显著影响.  相似文献   

13.
 Metals are the most widely used materials in engineering structures, and one of the most common failure modes of metal structures is fatigue failure. Although metal fatigue has been studied for more than 160 years, many problems still remain unsolved. In this article, a state-of-the-art review of metal fatigue is carried out, with particular emphasis on the latest developments in fatigue life prediction methods. All factors which affect the fatigue life of metal structures are grouped into four categories: material, structure, loading, and environment. The effects of these factors on fatigue behavior are also addressed. Finally, potential problems to be resolved in the near future are pointed out. Received: January 7, 2002 / Accepted: March 25, 2002  相似文献   

14.
金属疲劳裂纹扩展率曲线与S-N曲线之间的关系   总被引:3,自引:0,他引:3  
崔维成 《船舶力学》2002,6(6):93-106
目前有两种不同的理论用于预报金属结构的疲劳寿命。一种是基于S-N曲线的累积疲劳损伤理论,另一种是基于裂纹扩展率曲线的疲劳裂纹扩展理论,如果都把一个构件的最终断裂作为疲劳破坏的定义,则S-N曲线和裂纹扩展率曲线均是反映金属在疲劳载荷作用下的基本材料特性。尽管在过去这两种曲线是分别测试的,但它们之间应该存在一些相互关系。本文的主要目的就是讨论它们之间的关系。基于S-N曲线的一个一般表达式和裂纹扩展率曲线的一个有代表性的表达式,本文建立了两种曲线之间的一个正式关系,这表明只需要测试一种曲线,而另一种曲线就可以根据已有的试验结果导出。文章以一个中央裂纹平板作为例子,演示了如何根据一种曲线推导另一种曲线。  相似文献   

15.
陈飞宇  卢丙举  赵世平  程栋 《船舶工程》2019,41(S1):180-184
文章基于裂纹疲劳基本理论,针对在役导管架平台出现初始裂纹状态下结构承载力进行分析,考虑结构损伤与腐蚀等因素,建立了典型导管架平台整体结构模型和局部子模型,分析了在该工况下平台整体结构的疲劳强度,并确定了平台结构的疲劳关键部位。采用几何应力外插法计算了热点应力,基于疲劳裂纹扩展的疲劳分析方法,计算了疲劳关键节点的疲劳寿命与疲劳可靠度。该方法能够为海洋平台结构的维护和保养提供一定参考。  相似文献   

16.
本文针对深海载人潜水器耐压壳用钛合金,开展疲劳性能试验研究,得到该类型钛合金的室温断裂韧性,载荷比R=0.1下的疲劳裂纹扩展门槛值及疲劳裂纹扩展速率,基于选用的疲劳裂纹扩展预报模型,对载荷比R=0.1下的钛合金疲劳裂纹扩展行为进行了预报研究。结果表明:在载荷比不变的前提下,应力强度因子范围是疲劳裂纹扩展速率的主要影响因素,应力强度因子范围的增加会导致疲劳裂纹扩展速率增加;考虑小裂纹效应的疲劳裂纹扩展预报模型可对钛合金的疲劳裂纹扩展行为进行准确预报。  相似文献   

17.
疲劳破坏是船舶结构的主要破坏形式之一。为了保证船舶结构有足够的疲劳强度,各国船级社、船厂等均建立了船舶结构疲劳强度校核规范作为船舶疲劳评估的指导性文件,尽管这些规范均是建立在S-N曲线方法基础上的,但由于S-N曲线方法存在自身无法克服的缺陷(如忽略材料的初始缺陷等),对同一节点进行计算得到的疲劳寿命大相径庭。该文作者在基于裂纹扩展理论的基础之上,给出了一套详细的船体结构疲劳评估方法,并应用此方法对大型船舶结构典型节点的疲劳寿命进行评估,以期能为完善船舶结构疲劳寿命的评估提供参考。  相似文献   

18.
裂纹在循环压缩载荷下的扩展已经被试验证实,但是对于压缩疲劳特别是多轴压缩由于难以观测因而无法准确描述,另外裂纹面载压缩载荷下出现裂纹闭合也增加了问题的复杂性。潜水器结构的大部分区域是处于压应力状态,横舱壁水平大梁端部结构的T型节点正好位于板壳和横舱壁交汇处,承受着复杂的双轴压-压疲劳循环载荷。该文通过对5组T型节点的双轴疲劳试验研究,得到了试件在压—压载荷下的裂纹萌生和扩展规律。和单轴压疲劳不同,双轴压—压疲劳伴随有短裂纹的合并行为、主导有效短裂纹行为和裂纹干涉效应。  相似文献   

19.
具初始裂纹钢桥梁焊接构件疲劳裂纹扩展和疲劳寿命计算   总被引:1,自引:1,他引:0  
钢桥梁构件因焊接缺陷或者在疲劳应力交互作用下萌生裂纹,钢桥梁构件因存在初始裂纹大大地降低焊接构件的疲劳性能.文中考虑到焊接构件往往会存在初始缺陷,研究了含初始缺陷的桥梁焊接构件的疲劳分析方法.在已有的大量含裂纹构件的疲劳实验工作基础上,结合课题组所做的焊接构件疲劳实验资料,假设初始裂纹焊接构件在疲劳裂纹扩展过程中裂纹形状保持为半椭圆形状;针对桥梁构件实际受力特征,由钢桥梁构件的高周疲劳损伤演化方程入手,考虑初始裂纹条件下裂纹前缘的损伤区的存在及其对裂纹扩展的影响,采用虚拟裂纹扩张方法推导了适用于钢桥梁构件的疲劳裂纹扩展分析的疲劳裂纹扩展率公式,建议了裂纹扩展和疲劳寿命数值计算方法.采用文中的计算方法,研究了已有的钢桥梁结构焊接构件疲劳实验的裂纹扩展过程和疲劳寿命的计算.计算结果表明:裂纹的扩展过程中裂纹的深度和表面半长度之比a/c是一个变化的数值,且在一定的a0/t0条件下,随着a0/c0的增加,循环次数逐渐增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号