首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 673 毫秒
1.
船体板架在水下接触爆炸作用下的破口试验   总被引:19,自引:0,他引:19  
针对船体中常见的加筋板结构,在矩形方板上运用了3种不同尺寸的T型材,采用“井”字形和“++”字形两种加筋形式设计了4个板架模型,将模型四边刚性固定,在板中央放置炸药,分别对其进行了水下接触爆炸试验。爆炸作用下板架模型均以花瓣形破裂,产生大面积的破口,不同形式和尺寸的加强筋对板架的破坏程度具有不同的影响。通过对破口尺寸和形状的观测,分析了加强筋对破口长度的影响,提出了板架结构加强筋相对刚度Cj的概念,描绘了不同尺寸加强筋在不同炸药量下对板架结构破口范围的影响。同时,对现有的水下接触爆炸作用下的破口长度估算公式进行了修正,给出了考虑加强筋影响的破口计算公式;经过比较,该公式比现有的破口估算公式与试验结果更加吻合。  相似文献   

2.
为研究爆点位置对导弹接触爆炸下船体板架破坏所造成的影响,通过有限元模拟研究加筋板架在由2种药量和4个爆点位置组合成的8种工况下的破坏过程、破口大小及变形能,对比分析同种药量下爆点位置对加筋板架破坏的影响。结果表明:相同药量的炸药在加筋板架的不同爆点位置接触爆炸时,所产生破口大小间的差异可达20%以上,药量较小时,破口形貌的差别也较大;炸药在肋骨与纵骨交汇处爆炸时,与相同炸药在板格中心爆炸相比,加强筋的变形能可高出2倍左右,加筋板架的变形能则可高出40%以上。  相似文献   

3.
以典型舰船舱室为研究对象,分别建立对应2种打击模式下的多舱室结构模型。采用有限元分析软件,模拟多个舱室结构在内部爆炸冲击载荷作用下的变形和破坏过程,对炸药在舱内爆炸的毁伤特点以及舱室结构的破坏机理进行分析。分析结果表明,舱室结构破坏受炸药装药量、舱壁厚度、初始破口等因素影响,且初始破口对最终破坏效果的影响随着装药量的增加而降低。在对内部遭受较大装药量打击的舰船进行结构毁伤评估时,对于中心处起爆的情况,在进行多舱室建模时,可近似忽略导弹破口的影响,从而方便建模和计算过程。  相似文献   

4.
水下接触爆炸载荷作用下舰船防护结构的仿真和实验研究   总被引:1,自引:0,他引:1  
从数值仿真和实验两方面对接触爆炸载荷作用下舰船防护结构的破坏进行了研究.利用LS-DYNA中的ALE算法对多层防护结构在接触爆炸载荷作用下的破坏情况进行模拟,并在相同的条件下进行了实验研究,分析了不同装药量下钢板破口形状、大小和压力峰值,两者结果相比基本一致,表明数值仿真能很好地模拟实验.最后对数值仿真中钢板的塑性区域范围,以及各层板中心点处的有效应力、速度等动态参数的时间历程进行了分析,为舰船防护设计和武器战斗部设计提供依据.  相似文献   

5.
本文基于普通拉格朗日欧拉(CEL)耦合法研究水下近距离下不同炸药量爆炸对舰船底部分段结构的能量分布情况及能量耗散情况,给出了船底分段结构在水下近场爆炸载荷作用下的计算方法。研究发现,炸药能量与炸药质量成严格正比关系,随着时间的增加不同工况下炸药耗散的能量基本相同,作用到船底分段结构的能量与炸药量呈正比的关系。被爆结构相同,炸药形状大致一致时,耗散到空气中的能量与炸药的质量呈严格线性关系。  相似文献   

6.
为探讨固支方板结构在爆炸冲击波和高速破片联合作用下的变形破坏特点及规律,利用有限元分析软件ANSYS/LS-DYNA开展冲击波和高速破片对固支方板的联合作用数值模拟计算,阐述装药驱动预制破片的运动过程,分析冲击波载荷和破片载荷以及钢板在联合载荷作用下的变形破坏模式,并与试验进行对比。结果表明,数值计算结果与试验结果较为吻合;炸药底部中心处预制破片的初速最高,边缘处最低;在试验工况下,冲击波先于破片作用于结构,破片群总动能远大于爆轰产物及冲击波传递给结构的动能,破片群是造成钢板中心出现冲塞破口的主要因素,应作为防护结构的主要设计载荷。  相似文献   

7.
战斗部舱内爆炸对舱室结构毁伤的实验研究   总被引:3,自引:0,他引:3  
为探讨舰船抗爆抗穿甲防护结构设计,利用导弹模拟战斗部进行了舱室内部爆炸模型试验,研究内爆条件下高速破片和爆炸冲击波对舱室结构的联合毁伤效应,分析舱内爆炸环境下舱室板架结构的典型破坏模式.结果表明:模拟战斗部内爆载荷作用下舱室结构的整体变形以冲击波破坏为主;战斗部破片对舱壁板架产生侵彻穿孔破坏,并在近爆区板架上形成了破口密集区域;单个破口对舱室整体结构破坏影响不大,而密集破口区在后续冲击波作用下会发生撕裂,形成大破口,影响舱室整体结构性能.该研究结果,可用于指导舰船防护结构的设计.  相似文献   

8.
为研究超高分子量聚乙烯板在爆炸冲击波和破片侵彻联合载荷作用下的破坏及响应,采用LS-DYNA数值仿真的方法来模拟爆炸产生的冲击波及破片群作用到靶板上的过程,通过改变爆炸距离、载荷形式和靶板厚度等因素,得到在不同条件下靶板变形破坏的结果.其模拟的结果表明:相比于冲击波或破片群的单一载荷作用,联合载荷作用对靶板的破坏能力更强;在联合作用下,随着爆距的增加,靶板的整体弯曲变形和破坏程度减小,靶板的破坏模式由开始的集团冲塞破口转为穿孔破口和撕裂破口共同存在,直至只存在穿孔破口;在联合作用下,随着靶板厚度的增加,破片群穿透靶板的剩余速度逐渐减小,速度衰减率增大,靶板抵御破片侵彻的能力提高,但仅改变靶板厚度对整体变形及破坏模式的影响并不明显.  相似文献   

9.
接触爆炸下舰船强力甲板塑性动态响应特性研究   总被引:1,自引:0,他引:1  
基于舰船强力甲板结构和接触爆炸工况设计,采用非线性有限元计算方法对在不同炸药量下、不同尺寸的纵桁和强横梁的强力甲板进行接触爆炸数值模拟。分析球形炸药接触爆炸下空气冲击波的压力分布以及对甲板的冲击过程,结果显示强力甲板结构在接触爆炸下呈现出3种破坏模式,并通过定义构件相对强度因子,提出了破坏模式的判别条件,初步揭示舰船强力甲板在接触爆炸下的塑性动态响应特性。  相似文献   

10.
水下爆炸载荷作用下舰船结构极限强度研究   总被引:1,自引:0,他引:1  
在对水下爆炸载荷作用下典型舰船结构损伤研究的基础上,分析了塑性变形和各种破口形状尺寸等受损情况下Nishihara箱形梁的极限强度,得出结论:有破口的箱形梁未必比有塑性变形的极限强度小,若中剖面破口长度相等,则破口面积越大极限强度越小。利用NAPA软件建立典型舰船的模型得出设计载荷并导入MSC.Patran划分网格、定义属性并施加载荷与边界条件,运用MSC.Dytran模拟水下爆炸载荷高瞬态非线性分析,通过MSC.Nastran与工程软件MARS对该模型进行极限强度非线性分析对比,提出了一种对真实爆炸损伤状态下的舰船结构极限强度计算方法,证明其运用于结构设计校核极限强度的有效性和安全性。  相似文献   

11.
船体板架是舰船中最主要的结构形式,研究在水下接触爆炸作用下的船体板架毁伤过程对于舰船的抗爆抗冲击设计具有重要意义。借助AUTODYN通用软件,建立船体板架水下接触爆炸数值模型,同时运用耦合欧拉—拉格朗日算法进行计算,并与试验最终失效模式进行对比,吻合良好。分析了水下接触爆炸作用下船体板架毁伤全过程,并对船体板架破口的形成和扩展进行了分析,探讨了加强筋的破坏模式,提出了板架结构中板和加强筋破坏模式的耦合效应。通过研究,揭示了水下接触爆炸作用下船体板架的毁伤特性。  相似文献   

12.
对舰船板架在接触爆炸载荷作用下的变形问题进行了研究.基于变分原理得到四边固支的板架残余变形的近似计算公式,根据破坏准则给出了估算破口半径的近似方法,并与经验公式进行了比较,结果基本上是合理的,可应用于舰船结构在爆炸冲击波作用下的毁伤或防护方面的工程预测,从而为舰船的安全防护设计提供理论依据.  相似文献   

13.
To understand the intrinsic strong interaction between the soft coating and near-field underwater explosion, a series of comparative live fire tests are implemented. Nine steel circular plates with three configurations (i.e. rubber coated plate, foam coated plate and bare plate) are tested using 1.5 g PETN detonator. The stand-off between the plate center and explosive charge is ranged from 3.41 to 1.14 times of the maximum bubble radius. The transient strain history of the plate and acceleration history of the metal base fixture are monitored. The whole explosion process including local cavitation and bubble motion is recorded by an APX-RS high speed camera. Test results show that the compressibility of coating layer is the dominative factor that controls its protective performance in the shock wave loading phase. The more compressible foam coating distinctly reduce the shock wave intensity by local cavitation before enters the densification phase, while the explosion bubble shape and even the direction of water jet can also be changed. But the attenuation performance in the bubble loading phase is not as optimistic as that in the shock wave phase because more deformation space is required while the core has often entered the densification phase.  相似文献   

14.
水下爆炸是毁伤舰船等水中航行器的一条重要途径,但是水下爆炸对船舶毁伤效应的试验操作复杂,理论分析也难于进行,因此应用数值仿真手段研究水下爆炸对目标的毁伤效应具有实际意义。大中型船舶均采用双层船底结构,在给定的装药量的作用下双层船底结构的破坏程度就成为了一个关注的重要问题。采用非线性动力学分析软件AUTODYN-3D研究了薄板在水下非接触爆炸作用下的力学响应并与实验进行了对比,验证了计算的合理有效。对舰船典型的双层船底结构建模,进行了水下爆炸对双层船底结构毁伤效应的数值仿真研究,给出不同的船底结构在水下爆炸作用下的响应特点。  相似文献   

15.
为研究水下爆炸气泡溃灭发生射流时对结构的影响,借助有限元软件MSC.Dytran对固支方板在水下爆炸载荷作用下的动态响应进行研究。对底部爆炸和侧面爆炸两种典型情况进行计算,对射流发生时流场情况以及固支方板的响应特点进行分析,认为射流载荷是局部载荷,会引起严重的局部破坏,在近场水下爆炸研究中必须予以重视。  相似文献   

16.
基于通用仿真软件,对某油船进行了远场水下爆炸的动响应分析。研究了药包沿船长方向分布、沿水深分布和不同攻角对船体结构的影响。可以看出,中远场水下爆炸对油船的冲击响应,主要表现为总体响应,局部效应并不明显;爆距对冲击响应有很大的影响,而在远场爆炸时攻角对其影响不明显,随着爆距的增加,船体结构响应逐渐减小;武器的毁伤效应对船体外板影响最为显著,随着能量在船体内的传播,到主甲板时迅速衰减。通过进行计算分析得出了一些结论,为油船的设计及建造提供参考。  相似文献   

17.
[目的]为研究典型舱内爆炸载荷对加筋板的毁伤特性,将舱内爆炸载荷分为初始爆炸冲击波载荷和准静态气压载荷,利用有限元分析软件LS-DYNA开展爆炸载荷下固支单向加筋板毁伤特性的数值模拟。[方法]主要模拟载荷冲量相等和载荷峰值相等时固支单向加筋板的变形特性,以及加筋板分别在初始爆炸冲击波载荷、准静态气压载荷及2种载荷联合作用下的毁伤特性,并分析上述载荷作用下加筋板的变形特点。[结果]结果表明:当作用在加筋板上的冲量相等、载荷作用时间小于0.05倍垂向一阶自振周期时,加筋板的最终挠度值处于最大值附近;当载荷峰值相同时,存在饱和冲量值,达到饱和冲量值以后,载荷作用时间不再影响加筋板的最终变形。[结论]在舱内爆炸载荷作用下,加筋板的最终变形不是2种载荷作用下的简单叠加,2种载荷的联合作用会增强毁伤效果。  相似文献   

18.
基于相似原则设计了全封闭对称结构船体梁模型,将TNT炸药置于模型中部正下方爆炸,通过改变爆距和药量来研究梁模型在水下近距非接触爆炸作用下的整体损伤特性,比较爆炸气泡运动对梁结构造成的中垂和中拱弯曲损伤作用,探索近距条件下炸药爆炸造成梁发生整体损伤变形时的高效攻击方式。研究发现:在近距非接触爆炸作用下,当爆炸气泡脉动频率与梁一阶湿频率相近时,水下爆炸气泡对梁结构造成的损伤作用以中垂弯曲为主,且爆径比越小,中垂损伤作用越明显;若爆径比不变,随着药量的增大,梁的整体损伤模式会由中垂弯曲向中拱弯曲转变;一定爆距范围内,炸药在远距离多次爆炸比近距离一次爆炸所造成的梁结构中垂损伤变形要大。  相似文献   

19.
刚塑性板在柱状炸药接触爆炸载荷作用下的花瓣开裂研究   总被引:8,自引:0,他引:8  
张振华  朱锡 《船舶力学》2004,8(5):113-119
将薄板在接触爆炸载荷作用下的变形分为花瓣开裂之前和花瓣开裂之后两个阶段进行分析.利用Hamilton变分原理得到了花瓣开裂瓣数和花瓣翻转的曲率半径.分析中考虑了系统动能在运动过程中的变化对结果的影响.通过花瓣的旋转曲率半径实现了花瓣动能、弯曲能和断裂能之间的耦合.得到了装药量与破口之间的关系,计算结果与试验结果吻合较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号