首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
普通钢筋混凝土管片厚大笨重,生产、运输、施工中易损易裂、边缘极易破损,而使用钢纤维混凝土管片是有效防治此缺陷的工程手段之一.试验通过改变三种不同钢纤维类型混凝土的钢纤维体积掺量制成试块,研究不同掺量下不同类型钢纤维混凝土的拌和性能、形态,以及力学性能,结果表明:与基体混凝土相比较,钢纤维混凝土的抗变形能力和整体韧性明显提高,强度均优于基体混凝土,哑铃型和波浪型钢纤维混凝土的拌和性能较好,体积掺量1.8%的哑铃型钢纤维具有较好的力学性能指标.综合考虑管片的成型难易、生产成本、外观质量和力学性能,地铁盾构钢纤维混凝土管片的实际生产建议采用哑铃型钢纤维,体积掺量以1.8%为宜.  相似文献   

2.
活性粉末混凝土具有较高的力学强度和耐久性,已不断被应用于道桥工程中,但在应用中发现,活性粉末混凝土中添加的钢纤维较易发生氯盐腐蚀。利用具有耐酸碱特性的玄武岩纤维替代钢纤维,并与聚丙烯纤维混掺,配制成混杂纤维活性粉末混凝土。通过电通量法进行抗渗性能试验,研究其抗渗性能的优劣性,得出混杂纤维活性粉末混凝土的抗渗性能高于单掺纤维活性粉末混凝土的抗渗性能。  相似文献   

3.
在工作度和抗压强度研究的基础上,对比研究了不同纤维类型(玻璃纤维、聚丙烯纤维、钢纤维和混杂纤维)及掺量对高性能混凝土早龄期塑性开裂的影响.结果表明,单掺纤维或掺入混杂纤维可明显提高高性能混凝土的早龄期(1d)抗压强度;聚丙烯纤维和钢纤维可有效减小高性能混凝土早龄期塑性收缩裂缝的面积及宽度;二元混杂纤维比单一掺入玻璃纤维、聚丙烯纤维或钢纤维具有更好的限裂效果.  相似文献   

4.
混杂纤维混凝土强度研究   总被引:4,自引:0,他引:4  
研究了两种及两种以上纤维对混凝土的增强作用,讨论了纤维种类、掺量对混杂纤维混凝土流动性和力学性能的影响。研究结果表明,当在混凝土中掺入抗碱玻璃纤维和聚丙烯纤维时,其抗弯强度和抗冲击韧性均高于掺2.0%钢纤维混凝土相应的值;且施工性能也较好。抗碱玻璃含量为5.0%、聚丙烯纤维掺量为2.0%时,混杂纤维混凝土的抗弯强度超过7.5MPa.。y status  相似文献   

5.
混杂纤维混凝土抗弯冲击性能研究   总被引:3,自引:0,他引:3  
研究了掺加异型塑钢纤维、钢纤维以及这两种纤维混杂的混凝土梁的抗弯冲击性能。测定了在不同纤维掺量下混凝土梁的初裂冲击次数、破坏冲击次数以及冲击能。试验结果表明:混掺纤维比单掺纤维显著提高了混凝土的冲击能和延性,但对初裂性能影响不大。  相似文献   

6.
试验研究了不同钢纤维长径比、形状和不同PVA纤维掺量对纤维混凝土抗冲击荷载性能的影响。数据处理方法为先对冲击试验结果原始数据取对数值,然后进行数理统计分析。试验结果表明:与片状波纹形钢纤维相比,层布圆丝浪形纤维混凝±的抗弯冲击性能更强;钢纤维直径大于0.7mm时,长径比的增长能显著提高纤维混凝土的初裂能和断裂能;PVA纤维的掺入未能提高层布钢纤维混凝土抗弯冲击性能,当掺入量不当时,反而会降低其抗弯冲击性能;混杂纤维混凝土中PVA纤维的最佳掺量是1.3kg/m^3。  相似文献   

7.
超高性能钢纤维混凝土力学性能   总被引:3,自引:0,他引:3  
用端部弯折型、端部扁平型和波浪型3种钢纤维分别配制抗压强度大于100 MPa的超高性能纤维混凝土,纤维体积掺率分别为1.0%、2.0%、2.5%和3.0%.通过立方体抗压试验和梁抗弯试验,研究钢纤维形状和体积掺率对超高性能纤维混凝土流动性、抗压强度、抗弯强度、断裂能和弯曲韧度的影响.试验结果表明:纤维体积掺率为1.0%...  相似文献   

8.
CF-PF混杂纤维轻骨料混凝土抗冻性能试验   总被引:2,自引:0,他引:2  
以天然浮石作为轻骨料配制LC30纤维轻骨料混凝土,研究掺入碳聚丙烯混杂纤维对轻骨料混凝土抗冻性能的影响.通过快冻法试验,测得了不同冻融循环次数后混凝土的质量损失、相对动弹性模量损失及抗压强度损失.定义了混杂系数,并结合试验结果,说明纤维的正负混杂效应与纤维掺量之间的定量关系,同时分析了纤维的混杂效应机理.研究结果表明:碳纤维与聚丙烯纤维以不同掺量混杂,可以产生互补效应,对轻骨料混凝土的抗冻性能有一定的改善作用,为西北寒冷地区纤维轻骨料混凝土的应用提供依据.  相似文献   

9.
通过自制模具实现了对钢纤维从水泥石基体中拔出的实验测试,得到基体混凝土中钢纤维体积掺量为0~1.2%、硅灰取代水泥质量掺量为0~12%时钢纤维拉拔荷载-位移曲线图,通过显微硬度和SEM试验,测试得到了钢纤维-水泥石界面纤维硬度及界面区微观形貌特征。在测试基础上,提出了界面黏结拉拔韧性概念,并计算得到了界面黏结强度和拉拔韧性,分析了硅灰对界面黏结强度、拉拔韧性、界面显微硬度和微观形貌特征的影响规律。研究结果表明,硅灰改善了钢纤维-水泥石界面黏结性能,使界面黏结强度提高了10.7%~44.2%;界面区显微硬度提高了7.4%~38.8%,界面最薄弱层与钢纤维表面的距离由普通混凝土的60μm缩小到40μm,且硅灰掺量越大,效果越好;硅灰使钢纤维拉拔时峰值荷载对应的位移下降了4.1%~25.9%;对于不同掺量的钢纤维混凝土,钢纤维拔出韧性的最佳硅灰掺量为6%~9%。  相似文献   

10.
为了改善活性粉末混凝土的力学性能,在活性粉末混凝土中混合掺加两种纤维,即中等模量的耐碱玻璃纤维和高模量的钢纤维.通过两种纤维掺量的改变,研究二者混杂对活性粉末混凝土抗压强度、抗折强度力学性能的影响.试验结果表明:两种纤维混杂后能够使活性粉末混凝土的力学性能得到一定程度的提高.  相似文献   

11.
为了改善活性粉末混凝土的力学性能,在活性粉末混凝土中混合掺加两种纤维,即中等模量的耐碱玻璃纤维和高模量的钢纤维.通过两种纤维掺量的改变,研究二者混杂对活性粉末混凝土抗压强度、抗折强度力学性能的影响.试验结果表明:两种纤维混杂后能够使活性粉末混凝土的力学性能得到一定程度的提高.  相似文献   

12.
顾维  郭芳 《湖南交通科技》2023,(4):74-78+84
为研究纤维高强混凝土在不同环境介质长期作用下的强度变化规律,探究不同纤维掺入方法对高强混凝土耐久性能的影响。采用不同纤维种类与掺量制备了多组纤维高强混凝土试件,并对试件施加不同的环境介质影响,测试了纤维高强混凝土试件的28 d与180 d抗压强度与弯拉强度。结果发现:硫酸盐介质长期作用对高强混凝土耐久性影响最大,适量纤维的掺入有利于增强高强混凝土的强度与耐久性。试验表明:当纤维掺量为1%时,钢纤维高强混凝土具有最佳耐久性能;当纤维掺量为0.45%时,长期空气介质和长期水介质作用下的聚丙烯纤维混凝土具有最佳的弯拉强度;相较于单掺纤维,在不同环境介质作用下混杂纤维的高强混凝土表现出更好的抗压强度与弯拉强度,耐久性能得到了提升。  相似文献   

13.
以钢纤维和聚丙烯纤维作为增强材料,首先在实验室探讨了单掺和混掺上述两种纤维对混凝土物理力学性能以及收缩性能的影响,并结合现场进行喷射试验。室内试验结果表明,混凝土中混掺钢纤维和聚丙烯纤维可以改善混凝土拌和物的和易性,混凝土力学性能的改善效果也优于单掺上述两种纤维的混凝土,且当聚丙烯纤维的掺量为1.0 kg/m~3、钢纤维掺量为40 kg/m~3时,混凝土的力学性能最优,混掺两种纤维后,可使混凝土的早期收缩和后期收缩大幅度降低,可明显提高混凝土的抗裂性能。  相似文献   

14.
研究了不同体积掺量聚丙烯(PP)单丝纤维自密实混凝土的工作性、抗压强度和劈裂强度。研究表明:在不改变原有自密实混凝土配合比的情况下,PP纤维体积掺量不宜超过0.10%(体积份数);适当提高胶凝材料和高效减少剂的用量是改善纤维自密实工作性有效途径,并且可以提高纤维的掺量0.15%(体积份数);纤维对自密实混凝土的抗压强度影响较小,最优配合比下PP纤维自密实混凝土较普通自密实混凝土劈裂强度提高24%。  相似文献   

15.
结合厦门至昆明国家重点公路干线的建设,改变钢纤维掺量及砂率,配制了C40普通混凝土和钢纤维混凝土,进行全面系统的试验研究与对比分析,分析了钢纤维掺量和砂率对钢纤维混凝土强度的影响,确定了C40钢纤维混凝土在一定条件下的合理砂率(42%~44%)、钢纤维的最佳掺量(1.0%~1.4%)。  相似文献   

16.
为了优化掺钢纤维混凝土配合比,采用正交试验法研究水灰比、早强剂掺量、钢纤维掺量、矿料级配等四个因素对掺钢纤维混凝土物理力学性能的影响规律。结果表明:矿料级配对混凝土的和易性影响最为显著,其次是水灰比;钢纤维的掺量是影响混凝土抗折强度的主要因素,并且抗折强度随着钢纤维掺量的增加而增加;影响钢纤维混凝土的抗压强度的主要因素是水灰比,且抗压强度与水灰比的大小成反比。  相似文献   

17.
通过试验研究了多元矿物掺合料、引气剂及聚丙烯纤维复掺混凝土在静止溶液和流动循环溶液两种浸蚀条件下的抗硫酸盐干湿循环性能。结果表明:多元矿物掺合料、引气剂、聚丙烯纤维复掺有利于改善混凝土的抗硫酸盐干湿循环性能;混凝土聚丙烯纤维体积掺量小于0.2%、含气量小于6%时,随纤维和引气剂掺量增大,混凝土的抗硫酸盐干湿循环性能增强;降低混凝土的渗透性是改善其抗硫酸盐干湿循环性能的良好途径。  相似文献   

18.
钢/聚丙烯混杂纤维混凝土性能研究   总被引:1,自引:0,他引:1  
施磊  胡苗 《北方交通》2011,(5):98-100
采用钢纤维和聚丙烯纤维制备了混杂纤维混凝土,并对混杂纤维混凝土的工作性能和力学性能进行了测试和分析。研究结果表明:随着纤维的加入,新拌混凝土的流动性迅速降低;当水灰比较大时,普通混凝土与纤维混凝土的抗压强度和抗弯拉强度都较低;单纯加入钢纤维对混凝土的力学性能提高幅度有限,采用SF/PF混杂纤维不仅可以减少钢纤维的用量,还能明显提高抗压和抗弯拉强度。  相似文献   

19.
设置0%、0.5%、0.8%、1.2%、1.5%等5种钢纤维掺量,制作5种不同分层结构的钢纤维混凝土,研究钢纤维掺量、分层结构对钢纤维混凝土的抗压强度、劈裂强度、抗折强度的影响程度,并构建研究对象的函数关系.研究结果表明:钢纤维掺入混凝土中增强了其抗压、抗折、劈裂强度,但对抗压强度的影响程度较劈裂、抗折强度小,试验确定的最佳钢纤维掺量为1.2%.分层结构对试件的抗压强度值影响比钢纤维掺量对其影响更显著.上层钢钎维对提高试件的抗折强度作用较小,下层钢钎维混凝土厚度越大,其抗折强度也越大.  相似文献   

20.
以钢纤维掺量(0%、0.5%、1%、1.5%、2%)和再生粗骨料替代率(0、30%、40%、50%)为控制变量,以立方体抗压强度、劈裂抗拉强度、抗折强度及干燥收缩变形为指标,研究了钢纤维掺量对不同再生粗骨料取代率混凝土的力学及收缩性能影响规律。研究结果表明:①再生混凝土的力学强度整体上随着再生粗骨料的增加逐渐降低,而干燥收缩则随之逐渐增大;②适量的钢纤维可提升再生混凝土的立方体抗压强度、劈裂抗拉强度及抗折强度,还能抑制再生混凝土的干燥收缩;③钢纤维过量会导致再生混凝土的强度及收缩性能下降;④钢纤维的合理掺量为1.5%左右,在再生粗骨料取代率低于40%的混凝土中掺入钢纤维,能够得到大致与普通混凝土相似的强度及收缩水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号