首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着高速列车运行速度的提高,列车外形对气动性能的影响越发显著。以中国标准动车组为原型建立1:8比例3车编组仿真模型,对3种转向架裙板减阻方案、5种排障器导流罩减阻方案、4种车厢连接处外风挡减阻方案进行风洞试验。在60m/s风速,0°侧偏角条件下,裙板最优方案能使整车减阻10.2%;排障器导流罩最优方案能使整车减阻2.1%,外风挡最优方案能使整车减阻1.8%。试验结果为进一步优化中国标准动车组气动外形提供了理论参照。  相似文献   

2.
本文采用高速列车模型开展减小空气阻力措施的风洞试验研究,对采用不同减小空气阻力措施的高速列车模型的空气阻力特性进行对比分析,得到不同减小空气阻力措施的减阻效果。研究结果表明:在侧偏角为0°状态(列车直行和无侧风状态)下,在车顶采用优化空调导流罩3减阻效果最好,全车减阻效果可达4.59%;车身侧面裙板包住转向架外露的部分越多越有利于减小空气阻力;全封闭外风挡与半封闭外风挡的减阻效果相当;在车底部转向架周围空腔安装底部导流板2的减阻效果最好,全车减阻效果可达3.7%。通过对高速列车减小空气阻力措施的风洞试验研究,为高速列车减小空气阻力和外形优化提供了参考依据。  相似文献   

3.
为适应高速列车进一步提速的更低气动阻力实际需求,针对CR400AF型高速列车动车转向架和带头型简化车体,应用底部流动导向控制思想,采用附加轻质易造型材料包覆原有部件的理念,开展转向架各部件流线型化和车体底部导流板综合减阻效果的验证试验与数值仿真研究。验证试验选择有无导流板的流线型转向架带简化车体模型,在3种试验速度工况下阻力试验值与仿真值误差均少于10%,验证了数值仿真的可靠性,带导流板试验模型较不带导流板试验模型均有减阻。数值仿真研究运用Realizable k-ε湍流模型,采用切割体笛卡尔网格划分技术,并在边界层内采用棱柱层网格,控制第1层网格的厚度,确保y+值能满足壁面函数要求。经稳态明线运行的仿真模拟网格无关性检验后,探究了流线型动车转向架与导流板组合运用的气动减阻特性及效果。对比了流线型动车转向架与安装导流板前后动车转向架、简化车体以及转向架舱上的阻力变化情况和压力分布变化情况,分析了转向架区域的流场结构变化。数值仿真结果表明:流线型设计的动车转向架相较于原始动车转向架有一定的减阻效果,在400 km/h的运行速度下减阻率达到1.08%。流线型设计动车转向架与导流板组合运用后...  相似文献   

4.
高速列车车顶高压设备裸露于室外,易受环境影响产生积污。针对高速列车车顶受电弓绝缘子区域的流场特性进行仿真计算,分析高速列车运行情况下的流场结构,对3种不同导流罩下的车顶高压设备流场特性进行对比,得到了不同导流罩对高压设备区域流场的影响。结果表明:侧板型导流罩可增加绝缘子周围气流速度,避免污物沉积。  相似文献   

5.
我国对列车气动阻力的研究主要考虑列车的头型、断面形状和底部外形等方面,在受电弓减阻方面也主要是考虑受电弓的结构外形,然而对于受电弓残阻的风洞试验研究比较少.为了获得某高速列车的空气动力特性,并考察受电弓各种减阻措施的效果,在中国空气动力研究与发展中心低速空气动力研究所的8 m×6 m风洞中进行了列车模型的风洞试验,在风洞试验中通过在受电弓前部安装各种导流罩和风挡来测试其对受电弓阻力的影响.试验结果表明:受电弓的存在会对列车的气动阻力有约3.2%的增加;在头车尾部安装反向导流罩能有效的降低受电弓的气动阻力;在受电弓前郝安装风挡,这种风挡在侧偏角为0°时对受电弓的减阻有一定效果.  相似文献   

6.
空调设备作为维持轨道车辆车内乘客舒适度的重要组成部分,其外形结构对列车的气动阻力会产生影响.合理的空调导流罩安装角度可以有效降低列车气动阻力.利用计算流体力学(Computational Fluid Dynamics,CFD)方法研究空调导流罩安装角度对160 km/h市域列车气动阻力的影响.研究结果表明:空调导流罩安装角度越小,整车气动阻力越小,相对于无导流罩(90°)工况,导流罩安装角度为15°时,整车减阻达10%.头车流线型气动阻力系数随导流罩角度变化不大,除尾车流线型部分外,其他车辆气动阻力系数随着导流罩安装角度的增大而增大,尾车流线型气动阻力系数随导流罩安装角度的增大而降低.导流罩气动阻力随安装角度的增大而增大,不包含导流罩部分的空调气动阻力随导流罩安装角度的增大而降低.  相似文献   

7.
转向架作为高速列车大面积裸露在外且外形复杂的运行部件受到列车底部气流的直接作用,区域气动外形结构对高速列车整车气动阻力具有重要影响。基于三维稳态SST k-ω双方程湍流模型,采用数值仿真方法研究了轴箱外置式转向架不同包覆方式对高速列车气动性能的影响。研究了转向架区域安装小裙板、半包裙板、全包裙板、全包裙板+小底板以及全包裙板+大底板等5种方案下的高速列车气动性能,比较了不同方案下高速列车气动阻力的变化规律,阐明了高速转向架包覆方式对整车气动阻力、车底流动特性以及列车表面压力分布的影响。研究结果表明:随着转向架裙板包覆面积的增加,转向架腔后端板受到的气流冲击逐渐减弱,后端板上的正压分布降低,列车转向架区域周围的边界层厚度逐渐减小,转向架区域内的压力分布差异性逐渐减小,从而实现了列车整车气动阻力系数的降低。与小裙板模型相比,半包裙板、全包裙板、全包裙板+小底板以及全包裙板+大底板模型的列车气动阻力系数分别降低了5.2%、8.65%、10.3%、11.1%。对于轴箱外置式转向架来说,全包裙板+大底板方案可有效改善转向架区域流场,降低整车气动阻力。研究得到的转向架包覆方式将为新一代高速列车气动...  相似文献   

8.
动车组转向架排障器结构介绍及优化设计   总被引:1,自引:0,他引:1  
随着列车运营速度越来越高,转向架振动随之增大,对排障器结构强度及安装可靠性要求亦随之提高。通过对既有结构排障器进行分析,提出结构优化方案,完成强度分析及振动试验,并已批量装车使用,状态良好。  相似文献   

9.
针对高速列车车头流线型区域、转向架区域隔墙部位、风挡区域端墙部位共3个具备减阻潜力的部位布置了不同形状、尺寸及布置方式的随行波微细结构,通过仿真计算和风洞试验,获得了利用表面随行波微细结构进行减阻应用的可行性方案。仿真和试验结果表明,流线型部位不宜采用随行波微细结构;转向架区域隔墙部位和风挡区域端墙部位等处进行凹坑型表面随行波微细结构改形处理后具有良好的减阻效果。  相似文献   

10.
从仿真分析、风洞试验和线路测试3方面入手,综合分析转向架加装前端导流装置和空簧局部导流防护装置对列车空簧部位积雪结冰的影响。研究发现,采用全局导流和局部导流防护组合优化方案后,转向架前端来流出现明显下压现象,转向架区域上部的气流流速减小,下部气流流速增加,一方面减少了夹杂着雪花的气流对转向架区域的直接冲击,另一方面使得下部与转向架结构无接触的气体迅速通过转向架,从而在整体上减少了转向架各关键部件的积雪;在空簧处气流漩涡明显减少,使得雪粒子不容易被带入空簧附近区域,转向架空簧区域积雪量减少近80%,只在连接部位的缝隙处有少部分积雪,对列车的平稳性和舒适性影响甚微,提升了列车在高寒多雪地区的适应性。  相似文献   

11.
采用基于SSTκ-ω的DDES数值模拟计算方法,对城际列车的气动阻力进行研究。分析城际列车的阻力分布及组成,根据列车流场变化对列车表面进行平顺化,主要优化车下设备、风挡和空调等部位,分析各种措施减阻效果。通过对结果的分析对比,得出了其变化规律:列车气动阻力主要由压差阻力组成,占总阻力的70%~90%;列车转向架、车下设备、受电弓及风挡连接处流场变化比较剧烈,需通过外形优化进行减阻。优化模型减阻效果显著,以设备舱的形式封装车下设备,总气动阻力下降3.7%;封装车下设备的同时采用外风挡,列车总气动阻力下降12.7%;增加2种不同角度的空调导流装置,总气动阻力分别下降16.3%和18.9%。  相似文献   

12.
介绍高速列车受电弓导流罩的结构形式和作用,研究受电弓导流罩受力工况,并进行仿真计算分析和试验验证。通过仿真计算确定设计方案,通过试验验证,证明受电弓导流罩满足高速列车的运用要求。  相似文献   

13.
介绍高速列车受电弓导流罩的结构形式和作用,研究受电弓导流罩受力工况,并进行仿真计算分析和试验验证。通过仿真计算确定设计方案,通过试验验证,证明受电弓导流罩满足高速列车的运用要求。  相似文献   

14.
为研究高速列车受电弓安放位置和受电弓导流罩嵌入车体高低对气动噪声的影响,基于计算声学理论,建立高速列车气动噪声模型。高速列车模型采用四节编组,包括头车、两节中间车和尾车。受电弓分别安放于02车一位端、02车二位端和03车一位端,并考虑受电弓的开/闭口方式。研究结果表明:沿列车长度方向,受电弓分别安放在02车一位端、02车二位端、03车一位端的受电弓导流罩区域的气动噪声最大声压级呈减少趋势,且这种减小趋势与受电弓开闭口方式无关;受电弓导流罩安放在同一位置时,受电弓以闭口方式运行的受电弓导流罩区域声压级均小于开口方式,最大声压级相差1.1 dBA;采用dlz3模型(受电弓导流罩与车顶表面平齐)的气动噪声性能最优,最大声压级减小2.3 dBA。  相似文献   

15.
通过对缩比为1:8高速列车模型在8m×6m风洞进行的列车风洞试验,研究列车零部件其中包括空调导流罩,受电弓,受电弓导流罩,车门的形状位置发生变化时,对列车气动性能的影响,并对试验结果进行了分析,研究结果表明:受电弓的位置和布置形式会对整车阻力产生影响,当中间车门凹陷时,整车阻力增加,加有导流结构的门有效的改善了门凹陷引起的阻力增加,空调导流罩很好的顺形结构对阻力影响不大。  相似文献   

16.
通过分析某高速列车铝合金车体排障器的结构,研究制定了排障器与车体之间的装配方案。并且分析了装配过程中的难点和重点,提出了解决措施并进行了现场验证,对装配工艺进行了优化。  相似文献   

17.
采用计算流体力学方法,研究高速列车表面边界层演变特性以及气动阻力分布规律;通过在列车头车和尾车边界层分离点区域设置抽吸气孔,提出表面抽吸气边界层控制减阻方案,并评估其减阻效果。结果表明:头车和尾车边界层分离点区域分别设置抽吸气孔后,整车气动阻力系数均减小,最大减阻率可达6%。此项研究为高速列车气动减阻提供了新思路,对克服由于空气动力效应带来的提速瓶颈、节约能源具有重要意义。  相似文献   

18.
在长期的高速列车运营过程中,极易形成前后车辆的不同形式偏置,造成列车气动性能改变,甚至可能引发行车平稳性问题,极大影响乘坐舒适性和安全性。以高速列车尾车作为研究对象,探究尾车上下偏置时,高速列车尾部流场变化以及气动特性。基于SST k-ω双方程湍流模型,采用数值仿真方法研究了350 km/h高速列车尾车无偏置、尾车下降20 mm、尾车下降40 mm、尾车下降60 mm、尾车上升20 mm、尾车上升40 mm以及尾车上升60 mm 7种工况下列车的气动性能,分析高速列车气动阻力的变化规律,揭示了不同垂向位移下高速列车尾部流场特性以及列车表面压力分布情况。研究结果表明:高速列车尾部垂向位移对列车整体气动阻力影响较小,但对高速列车气动阻力分布以及流场特性造成一定影响。当尾车偏置位移达到60 mm时,列车车体气动阻力相对于无偏置工况分别降低了-1.11%和2.64%,转向架气动阻力相对无偏置情况下分别降低了11.35%和-17.43%。此外,尾车偏置对列车近尾流区域流场结构有一定影响,尾车鼻锥下方排障器周围漩涡结构由双漩涡结构向单漩涡结构转变;鼻尖处漩涡结构随着尾车高度下降而增大,随着尾车高度...  相似文献   

19.
基于空气动力学数值模拟方法,针对列车不同部位的转向架和转向架结构表面的气动阻力分布进行分析,对高速动车组列车整车气动效应进行数值仿真。研究结果表明:转向架流场区域在靠近来流端的上部会形成部分死水区,该区域流场与外部质量交换较小,转向架结构表面在来流方向上游会形成一个正压区,在下游方向的转向架结构表面会形成小范围的负压区。列车头车转向架气动阻力明显高于中间车和尾车,其中列车头车I位转向架受到的气动阻力最大,其次是头车II位端转向架,列车的中间车和尾车转向架阻力分布较为均匀,均为头车转向架阻力的60%左右。  相似文献   

20.
基于成熟的明线上高速列车气动噪声计算模型和可压缩大涡模型,考虑声学无反射边界条件,利用计算流体力学软件Fluent建立无限长隧道内高速列车气动噪声计算模型,对比分析高速列车在明线上与隧道内运行时的流场组织结构和气动噪声源。结果表明:高速列车在明线上与隧道内运行时具有类似的流场结构和气动噪声源分布规律,但隧道内的流场结构尺度与强度、气动噪声源强度均比明线上大;车速为350 km·h-1时,隧道内头车排障器尖点扰动区的速度幅值约为明线上的1.2倍,列车尾流区长度约为明线上的1.7倍,整车、1位转向架、头车流线型车底及中间车上部的等效声源声功率分别约为明线上的3.2倍、1.6倍、2.7倍和4.2倍;隧道内活塞效应并不是在全频率范围增加等效声源声功率,而是在包含峰值频率较狭窄的频率范围显著地增加等效声源声功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号