首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The offshore wind industry experienced a boost during the last decade in terms of size of wind farms and rated capacity of the wind turbines: towers are getting taller and blades are getting longer, constantly facing new and complex challenges. Because of the relative immaturity of the wind industry, and the fact that the offshore design standards stemmed from the oil and gas industry, it is generally acknowledged that the reliability levels achieved, although not very well understood, might result in partial safety factors not optimal for OWT. This paper addresses this situation by studying the reliability levels delivered by the current standards and assessing the validity of the safety factors through a reliability-based code calibration. The combination of the low probability of failure imposed on the design of OWTs and the computational cost of the aero-elastic time-domain simulations brings out the need to develop new approaches for reliability analyses. In this paper, the reliability analysis is performed using a Kriging surrogate model to approximate the load-effect from the aero-elastic simulations converting expensive-to-evaluate limit state functions to explicit functions. Subsequently, a calibration of the safety factors is carried out using the probabilistic models from literature. The approach is applied to an industry-reference turbine and support structure. The results showed very low probabilities of failure for the most severe design cases and confirm that the safety factors from the IEC are mostly adequate.  相似文献   

2.
吴哲丰  郝风光 《水运工程》2016,(S1):133-137
欧洲标准作为当前较新的设计标准应用逐渐广泛,其在桩基设计上采用分项系数法取代了传统标准中采用的安全系数法。分项系数可选择多个路径,并且可根据试桩情况,调整分析系数的数值,对于缺乏试桩的情况需对数值计算进行校正,设计方法先进。API-RP2A方法在桩基极限承载能力的计算上应用最为广泛。总结了几内亚力拓铁矿码头项目和几内亚阿联酋铝业码头项目中的设计经验,介绍了将欧标与API规范相结合进行桩基承载力设计的方法,并与国内2012版港口工程桩基规范进行了比较。  相似文献   

3.
根据ISPS规则中船舶人员安保的条款,研究、设计并且实施了人员安保的智能管理系统,包含总体方案、BR基站、蓝牙网络、IB-FSBA算法、智能手环、系统可靠性和系统编码.在蓝牙网络方面,采用微微网和散射网结合的方式组网,对于网络中的手环,采用模糊的和人工智能的贝叶斯算法查找各个手环,采用定位算法确定各个手环的位置坐标;在可靠性和智能手环方面,设计并且采用一种新的发明专利方案.该整体解决方案最终在ST-246海洋工程船上予以具体实施.  相似文献   

4.
本文应用结构可靠性分析方法,分别以船体梁和船体纵向加筋板极限承载能力为失效模式,对船体结构进行了安全评估和可靠性设计。应用所开发的新的改进可靠性计算方法,计算了基本物理量的不确定性对船体结构极限强度函数统计特征的影响,同时结合所开发的用于直接估算船体梁和加筋板极限强度的荛用计算方法,确定出不同船体结构的失效概率和设计目标安全指数,推导了局部安全因子,可以进行船体结构的可靠性设计与再评估。  相似文献   

5.
针对传统采用RS422通信的集中式管理中心任务过重、可靠性差、抗干扰能力差等缺点,设计开发一种基于CAN总线的无人水下航行器分布式控制系统。与传统的集中式控制系统相比,该控制系统可以更容易地接入功能模块且无须对现有硬件进行重新设计,具有很好的可扩展性,并充分考虑了该航行器的安全性及可靠性问题。首先,给出分布式控制系统的构建方案,再针对核心PC104控制管理中心给出主要控制模型方法,随后通过建立空间运动方程,完成对控制系统的模型建设和控制器软硬件设计工作,并通过实验室数字仿真和半实物仿真进行验证。结果表明,该控制系统具有性能稳定、传输效率高等特点,能够满足无人水下航行器的使用要求。  相似文献   

6.
文章针对一艘舱口间甲板发生屈曲破坏的矿砂船,对其舱口间甲板结构进行横向压缩强度分析和可靠性评估。为建立一套初步的可靠性评估方法,首先,采用半解析公式计算舱口间甲板结构在不同破坏模式下的压缩极限强度,其最小值即为结构的临界应力,为强度评估提供依据。其次,基于改进的一次二阶矩法编写FOR⁃TRAN子程序,计算结构的可靠性指标,建立了基于舱口间甲板的横向压缩强度的可靠性分析程序。综合评估结果表明,舱口间甲板结构的强度储备不足以抵抗外部载荷,屈曲破坏发生起始于檐板和舱口间甲板,这与目标船的事故分析报告中的屈曲现象吻合。根据舱口间甲板结构的强度和可靠性评估结果,采取三种加强方案,权衡结构安全因子和结构重量从而得出较优的修复加强方案。  相似文献   

7.
The recent foundering of the Costa Concordia in January 2012 demonstrated that accidents can occur even with ships that are considered masterpieces of modern technology and despite more than 100?years of regulatory and technological progress in maritime safety. The purpose of this paper is, however, not to speculate about the concrete causes of the Costa Concordia accident, but rather to consider some human and organizational factors that were present in the Costa Concordia accident as well as in the foundering of the Titanic a century ago, and which can be found in many other maritime accidents over the years. The paper argues that these factors do not work in isolation but in combination and often together with other underlying factors. The paper critically reviews the focus of maritime accident investigations and points out that these factors do not receive sufficient attention. It is argued that the widespread confidence in the efficacy of new or improved technical regulations, that characterizes the recommendations from most maritime accident investigations, has led to a lack of awareness of complex interactions of factors and components in socio-technical systems. If maritime safety is to be sustainably improved, a systemic focus must be adopted in future accident investigations.  相似文献   

8.
The purpose of this paper is to provide a basis for the development of reliability-based design formats for ultimate hull girder strength checks for bulk carriers in hogging conditions under combined global and local loading and to estimate implied safety levels in current rule practices for hull girders. The effect of alternative definitions of characteristic still-water loads on the safety format and, hence, the safety factors is assessed. The effect of systematic (bias) model uncertainties associated with loads and strength on the reliability measures is investigated.  相似文献   

9.
目前现行的JTS 190—2018《船厂水工工程设计规范》规定板桩式坞墙稳定性按照JTS 167—2018《码头结构设计规范》中有关板桩码头的相关条文进行验算,但板桩码头的水压力比坞墙小,直接采用板桩码头“踢脚”稳定性验算的分项系数表达式和分项系数取值是否合理有待研究。通过校准按旧规范JTJ 252—1987《干船坞设计规范(水工结构)》设计的板桩式坞墙稳定性的可靠度,得出板桩式坞墙“踢脚”稳定性的目标可靠指标,并确定按现行规范设计时的坞墙稳定性可靠指标。结果表明,板桩式坞墙“踢脚”稳定性的目标可靠指标应取4.0,而按现行规范设计时的可靠指标均值略大于4.0,故现行规范中分项系数的取值是合理的。  相似文献   

10.
This paper proposes a new method for combining the lifetime wave-induced sectional forces and moments that are acting on the ship structure. The method is based on load simulation and can be used to determine the exceedance probabilities of any linear and nonlinear long-term load combination. It can also be used to determine the long-term correlation structure between these loads in the form of the long-term correlation coefficients. They are essential part of the load combination procedures in design and strength evaluations as well as in the fatigue and reliability analysis of ship structures.The simulation method treats the non-stationary wave elevations during the ship’s entire life (long-term) as a sequence of different stationary Gaussian stochastic processes. It uses the rejection sampling technique for the sea state generation, depending on the ship’s current position and the season. Ship’s operational profile is then determined conditional on the current sea state and the ship’s position along its route. The sampling technique significantly reduces the number of sea state-operational profile combinations required for achieving the convergence of the long-term statistical properties of the loads. This technique can even be used in combination with the existing long-term methods in order to reduce the number of required weightings of the short-term CDFs. The simulation method does, however, rely on the assumption that the ship is a linear system, but no assumptions are needed regarding the short-term CDF of the load peaks.The load time series are simulated from the load spectra in each sea state, taking into account the effects of loading condition, heading, speed, seasonality, voluntary as well as involuntary speed reduction in severe sea states and the short-crested nature of the ocean waves. During the simulation procedure, special care has been given to maintaining the correct phase relation between all the loads. Therefore, time series of various load combinations, including the nonlinear ones, can be obtained and their correlation structure examined. The simulation time can be significantly reduced (to the order of minutes rather than hours and days) by introducing the seasonal variations of the ocean waves into a single voyage simulation. The estimate of the long-term correlation coefficient, obtained by simulating only a single voyage with the correct representation of seasonality, approaches the true correlation coefficient in probability. This method can be applied to any ship and any route, or multiple routes as long as the percentage of the ship’s total lifetime spent in each of them is known.A study has been conducted to investigate the effects of ship type, route and the longitudinal position of the loads on the values of the correlation coefficients between six different sectional loads; vertical, horizontal and twisting moments, as well as shear, horizontal and axial forces. Three ocean-going ship types have been considered; bulk carrier, containership and tanker, all navigating on one of the three busy ship routes; North America-Europe, Asia-North America and Asia-Europe. Finally, the correlation coefficient estimates have been calculated for five different positions along the ship’s length to investigate the longitudinal variation of the correlation coefficient.  相似文献   

11.
The maritime transportation industry currently employs several mandatory and non-mandatory norms of organizational safety management. These safety norms are commonly included in integrated maritime safety management systems, which aim at developing, monitoring, controlling and improving the safety of all related shipping operations. These systems are typically evaluated by following key performance indicators, which enable defined measures for various safety management components. However, the identification of indicators addressing safety management requirements constitutes a complex and generally unsystematic process for safety managers in the maritime industry. This article proposes a new method to assess the guidelines available in maritime safety management norms. The proposed method is applied to assess the content of two maritime safety management norms. The aim of this assessment is to identify a set of maritime safety management indicators that can systematically measure the most relevant components of maritime safety management. The application of this method resulted in the identification of 53 key performance indicators for monitoring and reviewing 23 identified safety management components that are commonly integrated into the functioning of maritime safety management systems. The method proposed provides guidance to accurately capture the actual aim and function of the key performance indicators. Furthermore, the indicators and safety components obtained with this method can be adopted as the basis for a safety management system and/or for the analysis of a safety management system already established in the industry.  相似文献   

12.
This paper presents a simplified method for the reliability- and the integrity-based optimal design of engineering systems and its application to offshore mooring systems. The design of structural systems is transitioning from the conventional methods, which are based on factors of safety, to more advanced methods, which require calculation of the failure probability of the designed system for each project. Using factors of safety to account for the uncertainties in the capacity (strength) or demands can lead to systems with different reliabilities. This is because the number and arrangement of components in each system and the correlation of their responses could be different, which could affect the system reliability. The generic factors of safety that are specified at the component level do not account for such differences. Still, using factors of safety, as a measure of system safety, is preferred by many engineers because of the simplicity in their application. The aim of this paper is to provide a simplified method for design of engineering systems that directly involves the system annual failure probability as a measure of system safety, concerning system strength limit state. In this method, using results of conventional deterministic analysis, the optimality factors for an integrity-based optimal design are used instead of generic safety factors to assure the system safety. The optimality factors, which estimate the necessary change in average component capacities, are computed especially for each component and a target system annual probability of system failure using regression models that estimate the effect of short and long term extreme events on structural response. Because in practice, it is convenient to use the return period as a measure to quantify the likelihood of extreme events, the regression model in this paper is a relationship between the component demands and the annual probability density function corresponding to every return period. This method accounts for the uncertainties in the environmental loads and structural capacities, and identifies the target mean capacity of each component for maximizing its integrity and meeting the reliability requirement. In addition, because various failure modes in a structural system can lead to different consequences (including damage costs), a method is introduced to compute optimality factors for designated failure modes. By calculating the probability of system failure, this method can be used for risk-based decision-making that considers the failure costs and consequences. The proposed method can also be used on existing structures to identify the riskiest components as part of inspection and improvement planning. The proposed method is discussed and illustrated considering offshore mooring systems. However, the method is general and applicable also to other engineering systems. In the case study of this paper, the method is first used to quantify the reliability of a mooring system, then this design is revised to meet the DNV recommended annual probability of failure and for maximizing system integrity as well as for a designated failure mode in which the anchor chains are the first components to fail in the system.  相似文献   

13.
The first part of this paper presented the required statistics and stochastic models for reliability analysis of the fatigue fracture of welded plate joints. This present Part 2 suggests a probabilistic damage tolerance supplement to the design SN curves for welded joints. The goal is to provide the practising engineer with simple tools that predict the reliability against fatigue fracture during service life. The impact of the chosen fatigue design factors (FDF) and the uncertainty in the applied stresses is revealed. The effect of an in-service inspection programme is also predicted. The results are presented as dimensionless matrices and suggested for use in support of decision-making at the design stage, without any advanced fracture mechanics modelling and stochastic simulation. One important advantage of this format is that the probability levels are presented regardless of actual weld class and target service life (TSL). This is obtained by introducing the FDF as a key parameter to the results. This parameter is defined as the ratio of predicted fatigue life over TSL. FDF is always calculated in the SN approach which is mandatory in fatigue life prediction. Various welded details (classes) will have the same reliability level for the same FDF. This is true at the end of TSL and at earlier stages, i.e. fractions of TSL. The absolute value of TSL is immaterial for a given FDF. In the case of in-service inspection, the inspection interval is also given without dimensions as a fraction of TSL.

Only the influence of future scheduled inspections is treated. Updating based on actual inspection results is not included as the scope of work is inspection planning at the design stage. Results for some frequent cases occurring in practice are readily derived and presented.  相似文献   


14.
故障模式效果和影响分析(FMEA)是应用在工业可靠性分析领域的一项成熟技术,但在船舶领域的应用还是空白。高速客滚船是一种事故多发的船舶,因此对它进行可靠性分析及综合安全评估(FSA)有重要意义。探讨了FMEA和FSA之间的关系,介绍了FMEA的概念并详尽阐述了该方法的分析过程,根据大型高速客滚船的实际情况,指出其应用在此对象的技术路线及相关注意事项。研究表明:应用FMEA技术可以有效地提高高速客滚船的可靠性和安全性。  相似文献   

15.
损伤舰船结构安全性评估   总被引:1,自引:0,他引:1  
损伤舰船的承载能力和环境载荷涉及许多不确定因素。为评估某舰损伤情况下的结构安全性,提出了基于极限强度和极值载荷的损伤舰船结构可靠性模型,分析了损伤舰船极限强度和极值载荷的统计特征,采用拉丁超立方抽样与条件期望和对偶变数相结合的方法进行可靠性分析。可靠性分析结果表明损伤舰船目标裕度可取0.75。  相似文献   

16.
Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method(SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.  相似文献   

17.
1/4 圆弧面沉箱防波堤设计分项系数研究(英文)   总被引:1,自引:0,他引:1  
The quarter-circular caisson breakwater (QCB) is a new type of breakwater, and it can be applied in deepwater. The stability of QCB under wave force action can be enhanced, and the rubble mound engineering can be less than that of semi-circular breakwaters in deepwater. In order to study the wave force distribution acting on the QCB, to find wave force formula for this type of breakwater, firstly in this paper, the distribution characteristics of the horizontal force, the downward vertical force and the uplift force on the breakwater were gotten based on physical model wave flume experiments and on the analysis of the wave pressure experimental data. Based on a series of physical model tests acted by irregular waves, a kind of calculation method, which was modified by Goda formula, was proposed to carry out the wave force on the QCB. Secondly, the reliability method with correlated variables was adopted to analyze the QCB, considering the high correlation between wave forces or moments. Utilizing the observed wave data in engineering field, the reliability index and failure probability of QCB were obtained. Finally, a factor Q=0.9 is given to modify the zero pressure height above SWL of QCB, and wave force partial coefficient 1.34 to the design expressions of QCB for anti-sliding, as well as 1.67 for anti-overturning, were presented.  相似文献   

18.
Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.  相似文献   

19.
海洋环境要素区划技术研究   总被引:1,自引:0,他引:1  
王晓玢  孙尧  郝燕玲 《中国航海》2006,(4):23-25,65
将中国近海现有海洋环境要素的观测数据有机地融合起来进行区域划分,对实现传统导航信息与海洋环境辅助信息合理地结合,提高船舶航行的安全性有重要的意义。以对船舶航行影响最大的海流要素为例,采用主因子分析的方法将24个量测指标综合成4个主因子,既简化运算又不失真地反映真实海况。通过方差最大正交旋转对荷载矩阵进行处理使其列向量两极分化,以分析影响各个主因子的主要指标。最后,利用4个主因子在各采样点的得分数将中国东海、南海划分为六个区域。此结果弥补了物理海洋学方法对海洋环境要素小尺度预报精度的不足,为船舶航行提供全域背景和信息决策指导。  相似文献   

20.
通过新能源技术,针对船舶日益严重的排放,建造“亲环境”的船舶,以保护海洋环境,减少大气污染.以太阳能作为能源的船舶,利用新型技术,通过合理的设计和方法,保证船舶安全航行,满足人员需求,并提高船舶安全性和可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号