首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urban passenger transport significantly contributes to global greenhouse gas emissions, especially in developing countries owing to the rapid motorization, thus making it an important target for carbon reduction. This article established a method to estimate and analyze carbon emission from urban passenger transport including cars, rail transit, taxis and buses. The scope of research was defined based on car registration area, transport types and modes, the stages of rail transit energy consumption. The data availability and gathering were fully illustrated. A city level emission model for the aforementioned four modes of passenger transport was formulated, and parameters including emission factor of electricity and fuel efficiency were tailored according to local situations such as energy structure and field survey. The results reveal that the emission from Beijing’s urban passenger transport in 2012 stood at 15 million tonnes of CO2, of which 75.5% was from cars, whereas car trip sharing constitutes only 42.5% of the total residential trips. Bus travel, yielding 28.6 g CO2, is the most efficient mode of transport under the current situations in terms of per passenger kilometer (PKM) emission, whereas car or taxi trips emit more than 5 times that of bus trips. Although a decrease trend appears, Beijing still has potential for further carbon reduction in passenger transport field in contrast to other cities in developed countries. Development of rail transit and further limitation on cars could assist in reducing 4.39 million tonnes CO2 emission.  相似文献   

2.
The application of personal carbon trading (PCT) to transport choices has recently been considered in the literature as a means of reducing CO2 emissions. Its potential effectiveness in changing car travel behavior is compared to the conventional carbon tax (CT) by means of a stated preferences survey conducted among French drivers (N  300). We show evidence that PCT could effectively change travel behavior and hence reduce transport emissions from personal travel. There is however a definite reluctance to reduce car travel. We were unable to demonstrate any significant difference between the effectiveness of PCT and the CT with regard to changing travel behavior. However, in the experiment, the PCT scheme provided consistent results while this was not the case for the CT scheme. Further research is needed into the “social norm” conveyed by a personal emissions allowance.  相似文献   

3.
This article presents the results of a scenario-based study carried out at the European Commission’s Joint Research Centre aimed at analyzing the future growth of aviation, the resulting fuel demand and the deployment of biofuels in the aviation sector in Europe. Three scenarios have been produced based on different input assumptions and leading to different underlying patterns of growth and resulting volumes of traffic. Data for aviation growth and hence fuel demand have been projected on a year by year basis up to 2030, using 2010 as the baseline. Data sources are Eurostat statistics and actual flight information from EUROCONTROL. Relevant variables such as the number of flights, the type of aircrafts, passengers or cargo tonnes and production indicators (RPKs) are used together with fuel consumption and CO2 emissions data. The target of the European Advanced Biofuels Flightpath to ensure the commercialization and consumption of 2 million tons of sustainably produced paraffinic biofuels in the aviation sector by 2020, has also been taken into account. Results regarding CO2 emission projections to 2030, reveal a steady annual increase in the order of 3%, 1% and 4% on average, for the three different scenarios, providing also a good correlation compared to the annual traffic growth rates that are indicated in the three corresponding scenarios. In absolute values, these ratios correspond to the central, the pessimistic and the optimistic scenarios respectively, corresponding to 360 million tonnes CO2 emissions in 2030, ranging from 271 to 401 million tonnes for the pessimistic and optimistic scenarios, respectively. This article also reports on the supply potential of aviation biofuels (clustered in HEFA/HVOs and biojet) based on the production capacity of facilities around the world and provides an insight on the current and future trends in aviation based on the European and national policies, innovations and state-of-the art technologies that will influence the future of sustainable fuels in aviation.  相似文献   

4.
Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.  相似文献   

5.
Rail and sea voyage journeys to Cyprus from a variety of origins are constructed to derive the travel emissions and travel time per person to compare popular aviation routes. The hypothetical ‘slow travel’ routes are approximately eight to ten times longer than flying. Emissions are lower from certain origins by about 100 kg CO2 per person per round trip under reasonably high occupancy conditions when compared to current direct air services. Emissions from the sea voyages are derived from a sample of 162 marine vessels using the energy efficiency design index for European ships running at 20 knots.  相似文献   

6.
This article investigates whether anticipated technological progress can be expected to offset the CO2 emissions resulting from rapid air traffic growth. Global aviation CO2 emissions projections are examined for eight geographical zones until 2025. Air traffic flows are forecast using a dynamic panel-data econometric model, and then converted into corresponding quantities of air traffic CO2 emissions using specific hypotheses and energy factors. None of our nine scenarios appears compatible with the objective of 450 ppm CO2-eq. recommended by the Intergovernmental Panel on Climate Change. Nor is any compatible with the Panel’s aim of limiting global warming to 3.2 °C.  相似文献   

7.
Air quality inside transportation carriages has become a public concern. A comprehensive measurement campaign was conducted to examine the commuters’ exposure to PM2.5 (dp  2.5 μm) and CO2 in Shanghai metro system under different conditions. The PM2.5 and CO2 concentrations inside all the measured metro lines were observed at 84 ± 42 μg/m3 and 1253.1 ± 449.1 ppm, respectively. The factors that determine the in-carriage PM2.5 and CO2 concentrations were quantitatively investigated. The metro in-carriage PM2.5 concentrations were significantly affected by the ventilation systems, out-carriage PM2.5 concentrations and the passenger numbers. The largest in-carriage PM2.5 and CO2 concentrations were observed at 132 μg/m3 and 1855.0 ppm inside the carriages equipped with the oldest ventilation systems. The average PM2.5 and CO2 concentrations increased by 24.14% and 9.93% as the metro was driven from underground to overground. The average in-carriage PM2.5 concentrations increased by 17.19% and CO2 concentration decreased by 16.97% as the metro was driven from urban to the suburban area. It was found that PM2.5 concentration is proportional to the on-board passenger number at a ratio of 0.4 μg/m3·passenger. A mass-balance model was developed to estimate the in-carriage PM2.5 concentration under different driving conditions.  相似文献   

8.
To accurately estimate real-world vehicle emission at 1 Hz the road grade for each second of data must be quantified. Failure to incorporate road grade can result in over or underestimation of a vehicle’s power output and hence cause inaccuracy in the instantaneous emission estimate. This study proposes a simple LiDAR (Light Detection And Ranging) – GIS (Geographic Information System) road grade estimation methodology, using GIS software to interpolate the elevation for each second of data from a Digital Terrain Map (DTM). On-road carbon dioxide (CO2) emissions from a passenger car were recorded by Portable Emission Measurement System (PEMS) over 48 test laps through an urban-traffic network. The test lap was divided into 8 sections for micro-scale analysis. The PHEM instantaneous emission model (Hausberger, 2003) was employed to estimate the total CO2 emission through each lap and section. The addition of the LiDAR-GIS road grade to the PHEM modelling improved the accuracy of the CO2 emission predictions. The average PHEM estimate (with road grade) of the PEMS measured section total CO2 emission (n = 288) was 93%, with 90% of the PHEM estimates between 80% and 110% of the PEMS recorded value. The research suggests that instantaneous emission modelling with LiDAR-GIS calculated road grade is a viable method for generating accurate real-world micro-scale CO2 emission estimates. The sensitivity of the CO2 emission predictions to road grade was also tested by lessening and exaggerating the gradient profiles, and demonstrates that assuming a flat profile could cause considerable error in real-world CO2 emission estimation.  相似文献   

9.
This paper assesses the separate effects of consumer preferences and technological advances on sales-weighted average CO2 emissions of new passenger cars in the Netherlands. Since 2008, consumer preferences have been moving away from large size, weight and power whereby car buyers were offsetting more than 50% of the potential CO2 reduction from technological advances. From 2008 to 2011 consumer choices not only ceased to offset a large share of the technological advances, but contributed more than an additional 30% to CO2 reductions. Had consumer preferences not decoupled from the historical upward trend, the Dutch sales-weighted average CO2 emissions of new passenger cars would have been 139 g/km rather than the 126 grams CO2 per km in 2011.  相似文献   

10.
The Beijing Government launched a new policy on restricting vehicle ownership in late 2010 to regulate the faster motorization and the excessive vehicular carbon dioxide (CO2) emissions. In this paper, we first analyzed this policy and its effect on private passenger vehicle population. The private passenger vehicle population in Beijing from 2011 to 2020 was predicted under three different scenarios: no constraint (NC), current constraint (CC) and tighter constraint (TC). Then the assessment of vehicular emissions reduction benefits was made on the basis of private passenger vehicle population, vehicle kilometers traveled and CO2 emission factors. It was projected that the CO2 emissions in 2020 will reach 23.90, 15.55 and 13.23 million tons under NC, CC and TC respectively. The policy is very effective in controlling the faster motorization and reducing CO2 emissions.  相似文献   

11.
This paper looks at the environmental effects of shifting from road to rail freight transportation. Little data is available to shippers to calculate the potential CO2 savings of an intermodal shift. In this paper we analyze a data set of more than 400,000 intermodal shipments to calculate the CO2 intensity of intermodal transportation as a distinct mode. Our results indicate an average intensity of 67 g of CO2 per ton-mile, but can vary between 29 and 220 g of CO2 per ton-mile depending on the specific origin–destination lane. We apply the market area concept to explain the variance between individual lane intensities and demonstrate the complexity in predicting the potential carbon savings in a switch from truckload to intermodal.  相似文献   

12.
This study analyzes consumer preferences for a new incentive program based on a point card to promote green consumption; the study also examines the program’s impact on bus utilization in South Korea. An ex-ante analysis was conducted to examine how consumer behavior can be modified based on varying incentive levels of the point card system. In addition, the effect of the system on consumers’ public transport utilization and resulting CO2 emissions reductions are analyzed. The adoption probability of the point card is forecast at about 93%, and annual CO2 emissions are forecast to decrease by 610 kt CO2.  相似文献   

13.
There is growing evidence that consumers respond more effectively to upfront price signals, such as vehicle purchase taxes and feebate policies, and to tax incentives that are more salient than others, such as company car taxes graded by CO2 emissions. This paper examines tax changes in The Netherlands, which are among the most stringent and most salient in Europe, and assesses the ex-post purchasing impacts and CO2 effectiveness of six years of CO2-based tax incentives for low-carbon cars in The Netherlands. Dutch tax incentives resulted in 13 g/km, or 11% lower average CO2 emissions in 2013. The Netherlands has moved from the 12th position before the tax changes in 2007 to become Europe’s number one in terms of the lowest average new car CO2 emissions and highest share of electric vehicles in 2013. Tax incentives for new cars sold between 2008 and 2013 have resulted in 4.6 million tons of potential lifetime CO2 abatement at the cost of a drop in tax revenues of 30–50%. However, when corrected for the Dutch policy-induced increasing real-world fuel-economy shortfall and leakage of carbon reduction potential through vehicle export of low-carbon cars, only 3.5 million tons or 75% of the CO2 reduction remains. CO2-based tax incentives for company cars seem to have contributed the most to the observed turnaround in purchasing behavior towards lower CO2-emitting passenger cars.  相似文献   

14.
The suitability of an electric vehicle of a given range to serve in place of a given conventional vehicle is not limited by the daily travel over distances within that that range, but rather by the occasional inconvenience of finding alternative transport for longer trips. While the frequency of this inconvenience can be computed from usage data, the willingness of individual users to accept that replacement depends on details of available transportation alternatives and their willingness to use them. The latter can be difficult to assess. Fortunately, 65% of US households have access to the most convenient alternative possible: a second car. In this paper we describe an analysis of prospective EV acceptance and travel electrification in two-car households in the Puget Sound region. We find that EVs with 60 miles of useful range could be acceptable (i.e. incur inconvenience no more than three days each year) to nearly 90% of two-car households and electrify nearly 55% of travel in those households (32% of all travel). This compares to 120 miles range required to achieve the same fraction of electrified travel via one-for-one replacement of individual vehicles. Even though only one third of personal vehicles in the US may be replaced in this paradigm, the ‘EV as a second-car’ concept is attractive in that a significant fraction of travel can be electrified by vehicles with modest electric range and virtually no dependence on public charging infrastructure.  相似文献   

15.
Battery electric vehicles (BEVs) could reduce CO2 emissions from the transport sector but their limited electric driving range diminishes their utility to users. The effect of the limited driving range can be reduced in multi-car households where users could choose between a BEV and a conventional car for long-distance travel. However, to what extent the driving patterns of different cars in a multi-car household’s suit the characteristics of a BEV needs further analysis. In this paper we analyse the probability of daily driving above a fixed threshold for conventional cars in current Swedish and German car driving data. We find second cars in multi-car households to require less adaptation and to be better suited for BEV adoption compared to first cars in multi-car households as well as to cars in single-car households. Specifically, the share of second cars that could fulfil all their driving is 20 percentage points higher compared to first cars and cars from single-car households. This result is stable against variation of driving range and of the tolerated number of days requiring adaptation. Furthermore, the range needed to cover all driving needs for about 70% of the vehicles is only 220 km for second cars compared to 390 km for the average car. We can further confirm that second cars have higher market viability from a total cost of ownership perspective. Here, the second cars achieve a 10 percentage points higher market share compared to first cars, and to cars in single-car households for Swedish economic conditions, while for Germany the corresponding figure is 2 percentage points. Our results are important for understanding the market viability of current and near-future BEVs.  相似文献   

16.
In this paper we assess the impact of the CO2 costs for short- and long-haul aircraft based on present values and on purchase options. We evaluate purchase options with a framework developed for real option analysis to estimate the value of flexibility under uncertain kerosene and CO2 prices. We find an average influence of CO2 costs on present values of €1.1 million for the short haul plane and €4.1 million for the long-haul plane over the typical lifetime of an airplane. For purchase options, we find a CO2 influence of €0.43 million for the long-haul plane and a moderate impact for the short-haul plane. The results underline the importance of CO2 and kerosene costs for long-haul aircraft.  相似文献   

17.
On-board real-time emission experiments were conducted on 78 light-duty vehicles in Bogota. Direct emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and hydrocarbons (HC) were measured. The relationship between such emissions and vehicle specific power (VSP) was established. The experimental matrix included both gasoline-powered and retrofit dual fuel (gasoline–natural gas) vehicles. The results confirm that VSP is an appropriate metric to obtain correlations between driving patterns and air pollutant emissions. Ninety-five percent of the time vehicles in Bogota operate in a VSP between −15.2 and 17.7 kW ton−1, and 50% of the time they operate between −2.9 and 1.2 kW ton−1, representing low engine-load and near-idling conditions, respectively. When engines are subjected to higher loads, pollutant emissions increase significantly. This demonstrates the relevance of reviewing smog check programs and command-and-control measures in Latin America, which are widely based on static (i.e., idling) emissions testing. The effect of different driving patterns on the city’s emissions inventory was determined using VSP and numerical simulations. For example, improving vehicle flow and reducing sudden and frequent accelerations could curb annual emissions in Bogota by up to 12% for CO2, 13% for CO and HC, and 24% for NOx. This also represents possible fuel consumption savings of between 35 and 85 million gallons per year and total potential economic benefits of up to 1400 million dollars per year.  相似文献   

18.
The objective of this study is to provide a strategic evaluation of the mitigation of CO2 emissions via modal substitution of high-speed rail for short-haul air travel on the Sydney–Melbourne, Australia city-pair from a life cycle perspective. It has been demonstrated that when considering CO2 emissions from vehicle operations, the modal shift from air to high-speed rail on this city-pair has the potential to provide a means of CO2 mitigation. However, uncertainty exists with regard to the level of mitigation potential when considering the whole-of-life performance of the systems. Given the significant difference in the infrastructure requirements between the air mode and the high-speed rail mode, this study quantifies the life cycle CO2 load attributable to each system and examines the effect on CO2 mitigation potential. The study concluded that while the inclusion of the linehaul infrastructure did increase the CO2 load associated with high-speed rail mode, it did not equate to or exceed the CO2 load per trip as experienced by the air mode. The avoided annual life cycle CO2 emission in the target year 2056 was 0.37 Mt representing an 18% reduction when compared to the air mode only on the city pair. In fact, the scenario comparison indicated that the substitution of high-speed rail for short-haul air travel on the city pair resulted in CO2 emissions avoidance throughout the longitudinal period.  相似文献   

19.
Experts predict that new automobiles will be capable of driving themselves under limited conditions within 5–10 years, and under most conditions within 10–20 years. Automation may affect road vehicle energy consumption and greenhouse gas (GHG) emissions in a host of ways, positive and negative, by causing changes in travel demand, vehicle design, vehicle operating profiles, and choices of fuels. In this paper, we identify specific mechanisms through which automation may affect travel and energy demand and resulting GHG emissions and bring them together using a coherent energy decomposition framework. We review the literature for estimates of the energy impacts of each mechanism and, where the literature is lacking, develop our own estimates using engineering and economic analysis. We consider how widely applicable each mechanism is, and quantify the potential impact of each mechanism on a common basis: the percentage change it is expected to cause in total GHG emissions from light-duty or heavy-duty vehicles in the U.S. Our primary focus is travel related energy consumption and emissions, since potential lifecycle impacts are generally smaller in magnitude. We explore the net effects of automation on emissions through several illustrative scenarios, finding that automation might plausibly reduce road transport GHG emissions and energy use by nearly half – or nearly double them – depending on which effects come to dominate. We also find that many potential energy-reduction benefits may be realized through partial automation, while the major energy/emission downside risks appear more likely at full automation. We close by presenting some implications for policymakers and identifying priority areas for further research.  相似文献   

20.
NOX emission rates of 13 petrol and 3 diesel passenger cars as a function of average speed from 10 to 120 km/h, emission class (pre-Euro 1 – Euro 5), engine type were investigated by on-board monitoring on roads and highways of St. Petersburg using a portative Testo XXL 300 gas analyzer. The highest level of NOX emission 0.5–2.5 g/km was inherent to old pre-Euro 1 petrol cars without a catalytic converter. NOX emissions rates of Euro 1 and Euro 2 petrol cars changed within 0.15–0.9 g/km, Euro 3 – 0.015–0.27 g/km, Euro 4 – 0.013–0.1 g/km, Euro 5 – 0.002–0.043 g/km. Euro 3 – Euro 4 petrol cars generally satisfied corresponding NOX Emission Standards (ES), except cold-start period, Euro 5 petrol cars did not exceed ES. Warmed, stabilized engines of Euro 3 – Euro 5 petrol cars showed 5–10 times lower NOX emission rates than corresponding ES in the range of speed from 20 to 90 km/h. NOX emission rates of diesel Euro 3 and Euro 4 cars varied from 0.45 to 1.1 g/km and from 0.31 to 1.1 g/km, respectively. Two examined diesel Euro 3 and one Euro 4 passenger vehicles did not satisfy NOX ES at real use. Euro 3 diesel cars showed 28.9 times higher NOX emissions than Euro 3 petrol cars and Euro 4 diesel car demonstrated 17.6 times higher NOX emissions than Euro 4 petrol cars at warmed and stabilized engine at a cruise speed ranging from 30 to 60 km/h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号