首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
为了研究车辆在单曲线上行驶时的运动学行为和驾驶行为,在ADAMS软件环境下创建了小客车的动力学模型,进行了切弯和跟弯两种驾驶模式的单曲线行驶试验.根据仿真输出的转向盘角度变化,将转向过程划分为进弯、维持和出弯3个阶段,分别得到了车辆进弯和出弯时的转向长度和转向时间,以及这2个参量与弯道半径、转角和车辆轴距的关系.研究结果表明:当弯道转角不超过某个临界值时,转向盘转角、转向时间以及转向长度随着弯道转角的增大而增大,并且切弯时更显著;当弯道半径不超过550 m时,转向长度随弯道半径增大而增大;不同驾驶模式会导致转向长度出现显著差别,切弯时的稳定转向长度约为跟弯时的2倍;切弯模式的"稳定转向时间-弯道半径"曲线先升后降,呈抛物线形状,而采用跟弯模式时该曲线呈单调下降趋势, 2种模式的平均转向时间为3.75 s.   相似文献   

2.
回头曲线路段的轨迹曲率特性和汽车过弯方式   总被引:1,自引:0,他引:1       下载免费PDF全文
为了明确山区公路回头曲线上的车辆轨迹特性和驾驶行为偏好,通过实车路试采集了自然驾驶习惯条件下回头曲线路段上的车辆行驶轨迹线和轮迹线-车道线的横向距离等参数,基于实测数据计算了轨迹曲率,分析了轨迹曲率与道路设计曲率之间的关系,确定了轨迹曲率变化模式,提出了轨迹等效半径的概念,研究了回头曲线路段的切弯行为和典型过弯方式. 研究发现:1) 回头曲线的入弯、弯中和出弯均可见严重的车道偏离. 2) 入弯时汽车在缓和曲线之前便已进入曲线行驶状态,出弯时车辆轨迹曲率在驶出缓和曲线之后的直线上降低至0,轨迹曲率的变化率要低于缓和曲线的曲率变化率;左转轨迹的曲率变化率要低于右转轨迹的曲率变化率. 3) 左转轨迹曲率的幅值回头曲线中部低于或者接近道路设计曲率,右转轨迹曲率则高于道路设计曲率. 4) 左转弯的轨迹等效半径要高于弯道设计半径,右转弯轨迹半径最小值和均值普遍则低于设计半径. 5) 驾驶人可以通过不同的切弯方式来实现回头曲线路段轨迹半径的增加和最大化,但需要侵占对向车道. 6) 驾驶人切弯时,左转弯的轨迹半径增量要高于右转弯的轨迹率半径增量,即车辆左转驶入回头曲线是更容易取得切弯效用;在大头线、平头线和小头线(转角分别大于、等于和小于180°) 3类回头曲线中,小头线和大头线上的切弯效果更明显.   相似文献   

3.
采用虚拟道路行驶仿真方法,在具有不同路宽的弯道上,进行了小客车行驶试验,分析了通道宽度与不同的弯道半径、转角相组合时其变化对行驶轨迹和速度的影响.研究结果表明:当弯道转角在20°~50°时,通道变宽能使轨迹半径和速度明显地、近乎线性地增加,其中受影响最大的是转角为20°、半径低于200 m的弯道.当通道宽度从2 m增加...  相似文献   

4.
双车道公路平曲线处车辆冲出车道或驶入对向车道是引发交通事故的主要诱因之一,为寻求车辆在公路平曲线处行驶时的侧向位置预判方法,研究基于驾驶模拟实验,设计了不同半径和转向的双车道公路平曲线,获取了车辆在弯道中点处侧向位置和进入弯道前速度。以车辆入弯前速度和弯道半径及转向为自变量,构建了车辆在弯道中点处侧向位置的线性回归预测模型,平均预测精度达94.32%。研究为提前感知车辆在弯道处的安全风险提供了途径,有助于预防和减少弯道处车辆冲出车道或驶向对向车道而引发的交通事故。  相似文献   

5.
为了研究小型车辆自然行驶状态下的行驶轨迹及行驶速度与山区道路风险路段的关系,以福州市森林公园经宦溪至鼓岭景区路段的4个单向弯道作为研究对象;采用无人机拍摄以小型车为主的车辆从入弯到出弯的整个自然行驶过程的视频资料,并用Ae软件中追踪运动模块追踪车辆左前轮的轨迹及计算出车辆过弯速度;根据行驶轨迹及行驶速度得到各弯道风险路段的长度。结果显示:弯道1的风险路段为0~2.273 m和32.838~39.268 m,弯道2的风险路段为43.375~46.039 m,弯道3的风险路段为21.001~21.507 m,弯道4的风险路段为18.521~24.283 m。本研究以车辆行驶轨迹及行驶速度两个真实行驶数据为切入点,为山区道路风险路段的识别提供一种基于小型车辆自然行驶状态的方法。  相似文献   

6.
为揭示山区公路回头曲线路段的车道偏移行为和轨迹特征,建立了自由行驶轨迹模型;在一条山区复杂线形公路上开展了实车驾驶试验,使用高精度车载设备收集自然驾驶状态下的车辆行驶轨迹、速度和偏移数据;基于轨迹相对位置曲线定义了回头曲线路段左右转车辆的自由行驶轨迹模式;以曲线转角180°为界,建立了回头曲线路段车辆相对位置拟合模型,设计了基于偏移量的自由行驶轨迹计算方法,并以其他道路的回头曲线作为算例进行模型验证。研究结果表明:回头曲线左转车辆呈现出4种轨迹模式,右转车辆呈现出3种轨迹模式;车辆轨迹在回头曲线的入弯、弯中和出弯阶段均出现了较大的偏移,偏移量大于40%,此时车身侵占对向车道,不同的轨迹模式具有不同的偏移特征;不同位置所对应的速度与偏移量的分布较离散,当速度折减小于6.5 km·h-1时,驾驶人可以通过占用对向车道来降低回头曲线行驶时的速度折损;基于横向偏移量建立的不同曲线转角下的轨迹拟合模型中,当回头曲线转角约为180°时,拟合模型的精度最大,左转拟合精度介于0.90~0.97,右转拟合精度介于0.65~0.97;当回头曲线转角大于180°时,拟合模型最大拟合精度0.97发生在右转,当回头曲线转角小于180°时,拟合模型最大拟合精度0.89发生在左转。可见,本文建立的轨迹模型具有较强的适用性,可为山区公路回头曲线的行驶轨迹预测提供手段和方法。   相似文献   

7.
为了在道路设计阶段预测车速,保证公路几何线形的协调性,建立了考虑侧向容许加速度、纵向加速度、制动减速度、制动热衰退和环境速度与线形参数关系的模型,计算了期望速度;建立了公路-驾驶者-车辆-环境仿真系统,对在三维路面上的行驶车辆进行仿真,得到并分析了试验道路的运行速度曲线.结果表明:(1)为有效控制速度波动,应取相近的曲线半径和直线长度,且直线不宜过长;(2)出弯道加速长度大于进弯道减速长度,且二者都大于回旋线长度;(3)山区路线由多个急弯构成时,速度曲线频繁波动的部分原因是车辆自身旋转动能和平动动能的相互转化;(4)运行速度协调性方法不适用于四级公路的线形评价;(5)偏角越小,轨迹对弯道的切角作用越大,弯道车速越高.  相似文献   

8.
通过对视觉干预下实验车辆的转向盘转角,以及纵、横向加速度连续观测分析,提出了转向盘转角变化率指标,用于评价视觉干预标线对驾驶行为的干预程度.实验结果表明,视觉干预标线能够影响驾驶员的驾驶行为,使其调整车辆的运行状态,改变行驶轨迹,设置适宜宽度的视觉干预标线不会影响行车安全.  相似文献   

9.
为明确车辆在高速公路车道保持阶段行驶过程中的轨迹横向摆动行为特征,利用高速公路无人机航拍的车辆轨迹数据集,基于车辆位置坐标提取行驶轨迹和速度,计算车辆在自然驾驶状态下的轨迹摆动特征指标,包括轨迹横向摆动的幅度和在摆动周期内的纵向行驶距离,分析不同车型的速度分布特征,研究行驶速度和车道位置对车辆轨迹横向摆动指标的影响。结果表明,尽管小型车和大型车的车身尺寸和动力性能存在显著差别,但两者的轨迹摆动幅度在整体上基本相同,两种车型的摆动幅度平均值分别为0.587 m和0.560 m,摆动周期内的行驶距离分别为252.95 m和251.99 m;车辆轨迹的横向摆动幅度对速度变化不敏感,不会随速度增加而增大,在高速条件下趋于平稳甚至下降,同样,摆动周期内的行驶距离与行驶速度之间未见显著相关性;不同的车道位置对轨迹摆动行为有一定影响,对小型车而言,车道位置由内向外变化时,轨迹摆幅有一定的增加趋势,而大型车的轨迹摆幅则是中间车道最小;国内高速公路车辆轨迹摆幅略高于德国HighD数据集的分析结果,但整体上非常接近;根据车辆轨迹的横向摆动幅度特征,可以确定高速公路小客车专用车道(或是小客车专用高速公路)的...  相似文献   

10.
在预瞄跟随理论基础上设计的驾驶员方向控制模型常用于弯道、移线、蛇行试验中横向轨迹的控制,文中研究了它对汽车侧风稳定性的控制效果.根据预瞄跟随理论及PID控制技术,采用MATLAB/Simulink建立了驾驶员方向控制模型;根据某轿车实测数据,采用多体动力学软件ADAMS建立了车辆-侧向风-道路耦合模型;通过定义输入变量(转向盘转角)和输出变量(侧向位移),实现了基于ADAMS与MATLAB/Simulink的汽车侧风稳定性联合仿真.试验结果显示驾驶员模型能够有效控制由侧向风引起的大幅度侧向偏移,系统具有较强的跟随性和鲁棒性.  相似文献   

11.
在分析稳定土拌和机全轮转向试验平台工作原理的基础上,对四轮转向各个工况进行试验,绘制出系统的伯德图,确定了系统的传递函数;利用MATLAB/SIMULINK软件对转向系统进行动态仿真.结果表明:系统具有的幅值裕度为13.4 dB,相位裕度为48.9°,显示该稳定土拌和机转向试验系统具有一定的储备;试验系统的响应速度较快...  相似文献   

12.
视距是评价汽车行驶安全性和舒适性的重要指标.从医学和工学相结合的角度,以行车实验为依据,对驾驶员心率和血压变动规律与山区公路平曲线通视距离相关性进行分析研究.基于人机工程学实验研究表明,山区公路平曲线通视距离,应比现行理论计算通视距离增加5-10 m的安全距离,同时提出了相应的山区交通安全改善措施.  相似文献   

13.
高级驾驶辅助系统(ADAS)是提高车内乘员安全性的主动安全系统之一,将车载参数和车辆位置参数相结合,提出一种能够应用到ADAS的城市道路换道行为识别模型. 在西安城市道路环境中进行实验,采集18 位驾驶员的9 个车载实时参数数据,以及前后车辆间的相对速度、相对距离、相对角度,提取412 个换道行为单元和824 个车道保持行为单元,共 88 992 条数据. 运用数理统计方法分析表明,方向盘转角、转向角速度、相对安全距离比在换道行为和车道保持行为之间有显著性差异,在这3 个特征参数的基础上,建立混合了高斯混合模型(GMM)和连续型隐马尔可夫模型(CHMM)的识别模型,用部分样本对模型效能评价. 结果表明,混合模型对换道行为的识别精度为93.6%,具有良好的识别效果,可以很好地应用到 ADAS.  相似文献   

14.
为了预测安装了迫导向机构的100%ULF(tra low floor)低地板车辆的曲线通过性能,分析了门架式转向架的迫导向机构组成及其导向原理,推导了其导向参数的理论公式,建立了动力学模型,并通过计算机仿真详细分析了迫导向机构对车辆曲线通过性能的影响,对比分析了加装前后车辆的4个曲线通过性能指标.研究结果表明:加装迫导向机构后车辆的一、二位轮组轮轨横向力变化较小,脱轨系数也无明显变化,轮组冲角可以减少0.5左右,约减少60%,外轮磨耗指数减少量均超过了10 kN();在对加装迫导向机构后的车辆在不同曲线半径下的通过性能进行预测,当曲线半径大于100 m时,曲线通过性能较好,当曲线半径小于10 m时,转向架的各项曲线通过性能指标响应变得较为敏感,总体车辆在迫导向机构的作用下具有较好的小半径曲线通过性能.   相似文献   

15.
基于车辆-轨道耦合动力学理论,根据中国最近研制的27 t轴重侧架交叉支撑转向架及C80E型通用敞车的实际结构和重载铁路曲线轨道结构特点及其技术规范要求,建立了曲线轨道的重载铁路货车-轨道耦合动力学模型;基于新型快速数值积分方法、Hertz非线性弹性接触理论和Shen-Hedrick-Elkins非线性轮轨蠕滑理论,应用计算机仿真计算了不同工况下重载货车曲线通过时的轮轨耦合动力特性,分析了曲线半径、缓和曲线长度和外轨超高等曲线几何参数对重载货车轮轨动力作用的影响。分析结果表明:曲线半径在400~800 m范围内变化时对轮轨动力影响极为明显,而当曲线半径大于800 m后其影响逐渐弱化,重载铁路曲线半径一般不应小于800 m;增加缓和曲线长度能在一定程度上降低重载货车轮轨动力作用,但其作用效果存在长度拐点,拐点前效果明显,拐点后影响甚微,且曲线半径和运行速度都会影响拐点的具体位置,建议根据拐点位置来确定不同曲线半径线路的最小缓和曲线长度;过大的欠超高或过超高均会加剧重载货车曲线通过时的轮轨动力作用,但在欠超高为-20~0 mm时重载货车的综合轮轨动力响应相对较小,即保持货车以适当的欠超高(-20~0 mm)通过曲线有利于降低轮轨动力和磨耗,这与中国铁路工程运输实际设置的欠超高取值范围一致。   相似文献   

16.
车载信息系统操作对驾驶员动作分神的影响   总被引:1,自引:0,他引:1  
车载信息系统的使用,在为驾驶员提供较为舒适车内驾驶环境的同时,还给驾驶员带来了不可忽视的分神问题.以多资源理论为基础,对驾驶员动作分神进行界定,选择车载收音机、CD、MP3 和导航仪作为车载信息系统研究对象,基于实验测试,定量分析车载信息系统操作对引起的驾驶员动作分神规律,并对导致驾驶动作分神的因素进行显著性分析.结果表明,交通环境和车载信息系统操作对驾驶人动作分神具有显著影响,车载收音机操作对动作分神影响不大,MP3 调节时手离开方向盘时间增加超过8.56%,冲突或差错率增加9.72%,导航仪路径输入时手离开方向盘时间显著增加,冲突或差错率增加 28.17%,语音路径诱导时刹车操作差错增加.  相似文献   

17.
高速公路夜间的交通事故率和死亡率均高于白天。对长松高速公路实验路段按照平曲线半径和纵坡值进行分类,通过实地行车实验,得到不同行驶速度下白天和夜间驾驶员对交通标志的识别距离数据。结果表明,驾驶员的昼夜识别距离随着行驶速度的增加而降低,曲线路段夜间对驾驶员的识别距离影响较白天显著,在曲线路段不同行驶速度下的夜间识别距离均小于白天。研究结果可以为我国高速公路交通管理部门制定夜间车速限制标准提供理论参考。  相似文献   

18.
针对驾驶人行为特性能造成交通拥塞的问题,运用模糊综合评价法将城市道路交通拥塞度划分为轻度拥塞、中度拥塞和重度拥塞.根据实际调查、实验数据回归分析出不同拥塞度下不同驾龄驾驶人操作转向盘、档位及停车次数的3种操作行为的变化规律及拥塞路段停车频率图.对交通拥塞程度进行量化为研究交通拥堵问题提供理论支持.研究交通拥塞下驾驶人的操作行为能充分了解驾驶人在交通拥堵下的操作行为规律,为提高交通运行安全和效率的研究提供理论支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号