首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
为研究驾驶员在双车道公路回旋线路段转向行为的影响因素,采用驾驶模拟实验收集15 名驾驶员在72个不同半径、不同转向和不同回旋线长度的弯道上的方向盘转角信号。运用小波变换将方向盘转角信号的空间序列进行分解,研究自然转向行为和轨迹修正行为依半径和回旋线长度的变化规律。结果表明:车辆入弯时的自然转向行程和曲线半径、回旋线长度均显著相关,但与弯道转向无关;入弯时,驾驶员对路线半径变化率的敏感度随着曲线半径的增大而减小。对于轨迹修正行为,在半径一定的条件下方向盘的平均摆幅随回旋线长度的增加而减小,但方向盘回转速率会随着回旋线长度增加而增加;出弯时方向盘的平均摆幅和回转速率整体较入弯时高。当回旋线长度与自然转向行程接近时,方向盘平均摆幅和回转速率均处于较低水平,故以自然转向行程为理想回旋线长度是合理的。  相似文献   

2.
回头曲线路段的轨迹曲率特性和汽车过弯方式   总被引:1,自引:0,他引:1       下载免费PDF全文
为了明确山区公路回头曲线上的车辆轨迹特性和驾驶行为偏好,通过实车路试采集了自然驾驶习惯条件下回头曲线路段上的车辆行驶轨迹线和轮迹线-车道线的横向距离等参数,基于实测数据计算了轨迹曲率,分析了轨迹曲率与道路设计曲率之间的关系,确定了轨迹曲率变化模式,提出了轨迹等效半径的概念,研究了回头曲线路段的切弯行为和典型过弯方式. 研究发现:1) 回头曲线的入弯、弯中和出弯均可见严重的车道偏离. 2) 入弯时汽车在缓和曲线之前便已进入曲线行驶状态,出弯时车辆轨迹曲率在驶出缓和曲线之后的直线上降低至0,轨迹曲率的变化率要低于缓和曲线的曲率变化率;左转轨迹的曲率变化率要低于右转轨迹的曲率变化率. 3) 左转轨迹曲率的幅值回头曲线中部低于或者接近道路设计曲率,右转轨迹曲率则高于道路设计曲率. 4) 左转弯的轨迹等效半径要高于弯道设计半径,右转弯轨迹半径最小值和均值普遍则低于设计半径. 5) 驾驶人可以通过不同的切弯方式来实现回头曲线路段轨迹半径的增加和最大化,但需要侵占对向车道. 6) 驾驶人切弯时,左转弯的轨迹半径增量要高于右转弯的轨迹率半径增量,即车辆左转驶入回头曲线是更容易取得切弯效用;在大头线、平头线和小头线(转角分别大于、等于和小于180°) 3类回头曲线中,小头线和大头线上的切弯效果更明显.   相似文献   

3.
双车道公路平曲线处车辆冲出车道或驶入对向车道是引发交通事故的主要诱因之一,为寻求车辆在公路平曲线处行驶时的侧向位置预判方法,研究基于驾驶模拟实验,设计了不同半径和转向的双车道公路平曲线,获取了车辆在弯道中点处侧向位置和进入弯道前速度。以车辆入弯前速度和弯道半径及转向为自变量,构建了车辆在弯道中点处侧向位置的线性回归预测模型,平均预测精度达94.32%。研究为提前感知车辆在弯道处的安全风险提供了途径,有助于预防和减少弯道处车辆冲出车道或驶向对向车道而引发的交通事故。  相似文献   

4.
不同的车辆在不同的情况下转向行驶具有不同的转向半径,转向半径不仅与车辆的本身参数有关,还与转向时的车速、转向角度以及减速度有关。文章对车辆转向半径跟影响因素的关系进行研究,进而寻求它们的函数关系,最终对汽车转向的路径进行模拟。  相似文献   

5.
为揭示山区公路回头曲线路段的车道偏移行为和轨迹特征,建立了自由行驶轨迹模型;在一条山区复杂线形公路上开展了实车驾驶试验,使用高精度车载设备收集自然驾驶状态下的车辆行驶轨迹、速度和偏移数据;基于轨迹相对位置曲线定义了回头曲线路段左右转车辆的自由行驶轨迹模式;以曲线转角180°为界,建立了回头曲线路段车辆相对位置拟合模型,设计了基于偏移量的自由行驶轨迹计算方法,并以其他道路的回头曲线作为算例进行模型验证。研究结果表明:回头曲线左转车辆呈现出4种轨迹模式,右转车辆呈现出3种轨迹模式;车辆轨迹在回头曲线的入弯、弯中和出弯阶段均出现了较大的偏移,偏移量大于40%,此时车身侵占对向车道,不同的轨迹模式具有不同的偏移特征;不同位置所对应的速度与偏移量的分布较离散,当速度折减小于6.5 km·h-1时,驾驶人可以通过占用对向车道来降低回头曲线行驶时的速度折损;基于横向偏移量建立的不同曲线转角下的轨迹拟合模型中,当回头曲线转角约为180°时,拟合模型的精度最大,左转拟合精度介于0.90~0.97,右转拟合精度介于0.65~0.97;当回头曲线转角大于180°时,拟合模型最大拟合精度0.97发生在右转,当回头曲线转角小于180°时,拟合模型最大拟合精度0.89发生在左转。可见,本文建立的轨迹模型具有较强的适用性,可为山区公路回头曲线的行驶轨迹预测提供手段和方法。   相似文献   

6.
车辆的径向加速度是车辆在弯道上行驶时驾驶行为的重要表征,通过对加速度的分析,可对驾驶员加速和刹车的行为进行定量描述.通过对双车道公路平曲线处的车辆运行车速现场进行行车实验,获得车辆转弯时的径向加速度,利用Matlab软件建立了车辆加速度与平曲线线形之间的数学模型.实验结果表明,平曲线处车辆行驶时的加、减速行为:车辆从直线进入到曲线时逐渐以较大的减速度减速至该圆曲线半径所对应的运行车速;当汽车离开曲线时,会适当加速至期望车速,然后做匀速行驶.  相似文献   

7.
通过对视觉干预下实验车辆的转向盘转角,以及纵、横向加速度连续观测分析,提出了转向盘转角变化率指标,用于评价视觉干预标线对驾驶行为的干预程度.实验结果表明,视觉干预标线能够影响驾驶员的驾驶行为,使其调整车辆的运行状态,改变行驶轨迹,设置适宜宽度的视觉干预标线不会影响行车安全.  相似文献   

8.
为了提供复杂道路上汽车自动驾驶的目标速度,提出了基于前视轨迹曲率的速度决策算法:首先决策出前视断面的轨迹点,算出每个点位的轨迹曲率并将其作为输入数据;然后从时间最省、驾驶最舒适、定速巡航以及混合模式中选择其一作为决策目标;在速度界限以及纵向/侧向舒适性约束下进行滚动时域优化,决策出前视断面上的期望速度值,随着车辆的行驶前视断面依次向前滚动,最终得到沿行驶距离变化的速度曲线.用复杂山区道路的实测数据验证了模型的精度,以2条公路和1条赛道作为仿真算例,结果表明:(1) 通过组合不同的轨迹决策目标和速度决策目标,能够得到多种驾驶模式的速度曲线,进而模拟出多种实际驾驶行为;(2) 由于前视轨迹是在通道边界内生成,弯道半径、转角、回旋线、路宽、偏转方向等用于确定通道边界的道路变量,都会改变轨迹特性进而影响行驶速度,因此,本文算法能够适应复杂的道路几何条件.   相似文献   

9.
为了在道路设计阶段预测车速,保证公路几何线形的协调性,建立了考虑侧向容许加速度、纵向加速度、制动减速度、制动热衰退和环境速度与线形参数关系的模型,计算了期望速度;建立了公路-驾驶者-车辆-环境仿真系统,对在三维路面上的行驶车辆进行仿真,得到并分析了试验道路的运行速度曲线.结果表明:(1)为有效控制速度波动,应取相近的曲线半径和直线长度,且直线不宜过长;(2)出弯道加速长度大于进弯道减速长度,且二者都大于回旋线长度;(3)山区路线由多个急弯构成时,速度曲线频繁波动的部分原因是车辆自身旋转动能和平动动能的相互转化;(4)运行速度协调性方法不适用于四级公路的线形评价;(5)偏角越小,轨迹对弯道的切角作用越大,弯道车速越高.  相似文献   

10.
采用虚拟道路行驶仿真方法,在具有不同路宽的弯道上,进行了小客车行驶试验,分析了通道宽度与不同的弯道半径、转角相组合时其变化对行驶轨迹和速度的影响.研究结果表明:当弯道转角在20°~50°时,通道变宽能使轨迹半径和速度明显地、近乎线性地增加,其中受影响最大的是转角为20°、半径低于200 m的弯道.当通道宽度从2 m增加...  相似文献   

11.
为得到超高率对车辆方向控制的影响,以“道路-驾驶人-车辆”仿真系统为手段,以超高率/反超高率和行驶速度为试验变量,以小客车为仿真车型,以一条设计速度为30km/h的三级公路为试验对象,进行了三维路面上行车动力学的仿真试验.试验结果表明:①超高会减轻侧向力作用下轮胎的侧偏角,从而减低对方向盘角输入的需求;②超高会减小弯道上的轮胎拖距,并减弱前轮转动对车体的抬升作用,明显降低曲线行驶时的操舵矩,从而使操纵变得容易;③超高也会增加车辆的侧倾摆动(朝曲线内侧),对于低速车辆,其摆动会更明显;④小半径曲线上的双向路拱或者反超高会增加转向需求,当车速较高时,其方向将难以控制.  相似文献   

12.
为降低70%低地板有轨电车的车轮磨耗,分析了刚性轮对与独立旋转车轮的导向机理,建立了拖车采用传统刚性轮对与拖车采用独立旋转车轮的两种车辆模型,计算了两种车辆模型在不同工况下的动力学性能,并根据Archard磨耗模型对比分析了两种模式下的车轮磨耗情况. 计算结果表明:车辆直线运行时,拖车采用刚性轮对的车辆稳定性及横向平稳性较好,车轮磨耗位置居中且磨耗量小于独立旋转车轮;车辆运行于大半径曲线时采用刚性轮对的车辆曲线通过评价指标较好,磨耗量较独立旋转车轮小;随着曲线半径的减小,采用刚性轮对的车辆曲线通过性能迅速恶化而采用独立旋转车轮的车辆各指标变化幅度较小,在半径为100 m及以下的曲线时,采用独立旋转车轮的车辆曲线性能更优且车轮磨耗小于刚性轮对,特别在曲线半径为25 m时,独立旋转车轮磨耗量仅为刚性轮对的60%左右,拖车采用刚性轮对的车辆在直线及大半径曲线时性能较优,拖车采用独立旋转车轮的车辆更适用于小半径曲线.   相似文献   

13.
为了预测安装了迫导向机构的100%ULF(tra low floor)低地板车辆的曲线通过性能,分析了门架式转向架的迫导向机构组成及其导向原理,推导了其导向参数的理论公式,建立了动力学模型,并通过计算机仿真详细分析了迫导向机构对车辆曲线通过性能的影响,对比分析了加装前后车辆的4个曲线通过性能指标.研究结果表明:加装迫导向机构后车辆的一、二位轮组轮轨横向力变化较小,脱轨系数也无明显变化,轮组冲角可以减少0.5左右,约减少60%,外轮磨耗指数减少量均超过了10 kN();在对加装迫导向机构后的车辆在不同曲线半径下的通过性能进行预测,当曲线半径大于100 m时,曲线通过性能较好,当曲线半径小于10 m时,转向架的各项曲线通过性能指标响应变得较为敏感,总体车辆在迫导向机构的作用下具有较好的小半径曲线通过性能.   相似文献   

14.
针对四轮前后轮转向车辆的稳定车道线保持,提出集成直接横摆力矩和车道 线保持的串级控制策略.主控制器实现车道线保持控制;副控制器实现车辆稳定性控制. 主控制器的前轮转角作为副控制器的参考输入,计算期望滑移角和期望横摆率.后轮转角 和横摆力矩作为副控制器控制输入,基于LQ算法计算补偿后轮转角和横摆力矩,实际滑 移角和实际横摆率跟踪期望滑移角和期望横摆率.在副控制器车辆稳定性控制基础上,主 控制器实现准确地车道线保持控制,保证车辆在车道内安全行驶.实验结果表明,实现准 确车道线保持,并保证车辆的稳定性和操纵性.  相似文献   

15.
为提高超高速公路行驶安全性,使用结构分析和数学模型的方法研究基于智能路钮的高速公路虚拟轨道系统. 该系统由路面子系统、车载子系统和服务中心子系统组成. 安装车载系统的车辆接近写入路钮时激活虚拟轨道系统,阅读器读取标签路钮的位置坐标和该处道路线形信息,同时数据处理模块读取线形参数并处理得到道路切线与车身角度,读取前轮偏角、车辆速度和相邻两个标签路钮之间的距离,利用计算模型得到车辆在相邻两个标签路钮之间行驶时方向盘的转动角速度,并将控制参数发送给转向电机. 研究结果表明,当超高速公路设计车速分别为140,160,180 km/h时,只要保证路钮间的距离分别小于1.33,1.50,1.69 m,就可保证车辆偏离中心线的距离小于0.5 m. 因此,基于智能路钮的虚拟轨道系统可将车辆限制在虚拟轨道内行驶,保证超高速公路的安全性.  相似文献   

16.
现有的换道轨迹研究大多是将换道轨迹规划和换道轨迹跟踪进行相对独立的研究,这类轨迹在实施过程中将产生不可避免的误差。为了消除这一误差以及缓解或解决由于不当换道行为引起的交通问题,本文提出一种考虑车辆动力传动和转向系统的换道轨迹优化策略,用以指导或替代驾驶员的换道行为。首先,利用Next Generation Simulation (NGSIM)数据获得换道过程的主要驾驶任务,并用highD数据对其进行验证。其次,基于二自由度车辆模型分析车辆的换道运动特性,构建能够被动力传动系统和转向系统所实现的换道轨迹。结果表明,所提策略可以在保证驾驶安全性的前提下,实现经济、舒适和高效的换道过程。单独考虑经济、舒适和高效的优化策略,能够分别降低35.71%的单位路程燃油消耗,94.58%的前轮转角的角速度以及70%的换道所需时间。这说明所提的换道轨迹优化策略能够从微观角度缓解或解决由不当换道驾驶行为造成的交通问题,并为驾驶辅助系统提供理论依据和方法指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号