首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
For railway vehicles having coned wheels mounted on solid axles there is, in general, a conflict between stability of lateral deviations from the motion along the track and ability to steer round curves. However, the three-axle vehicle with zero bending stiffness and with shear elasticity between all wheelsets can satisfy the requirement of perfect steering and for a range of values of equivalent conicity possesses both static and dynamic stability. The static and dynamic stability of the most general form of symmetric three-axle vehicle is investigated, and stability criteria derived.  相似文献   

2.
For railway vehicles having coned wheels mounted on solid axles there is, in general, a conflict between stability of lateral deviations from the motion along the track and ability to steer round curves. However, certain configurations of three-axle vehicle can satisfy the requirement of perfect curving and for certain values of the system parameters are dynamically stable. In the case where three wheelsets have semi-rigid articulation and either the distribution of conicity amongst the wheelsets or the position of the articulation joint are varied, it is shown that both flutter and divergence instabilities can occur at low speeds, in contrast to the more common dynamic instabilities of other forms of railway vehicle which are driven by the inertia forces.  相似文献   

3.
装配四轮分布式驱动-转向(4WID-4WIS)底盘的全矢量线控车辆具备多可控自由度、高速稳定性强的特点,是极限工况稳定裕度和安全性较高的理想车型。为了解决全矢量线控车辆在极限工况下纵横向控制冲突危害行车安全的问题,提出一种基于模型预测控制 (MPC) 的分层式车辆纵向和横向运动协同控制方法。建立基于单轨模型的期望运动状态识别方法,设计模型预测控制器转换动力学目标,采用泰勒展开和前向欧拉方法对预测模型进行线性离散化处理;设计基于负荷率的轮胎力优化分配方法,利用反正切轮胎逆模型求解控制执行量。仿真结果表明,协同控制方法能显著提高车辆在不同路面下的极限运动稳定性,更精准地跟踪期望运动状态,扩大稳定裕度,保障行车安全。  相似文献   

4.
For railway vehicles having coned wheels mounted on solid axles there is a conflict between dynamic stability and steering ability

It is shown that the stiffness and kinematic properties of all possible interwheelset connections are characterised by two properties describing the distortional characteristics of the vehicle in plan. Within this framework, the various possibilities for steered wheelsets are considered, and several past and current proposals are reviewed. Using the linear approach to dynamic stabibty and curve negotation the performance of existing and newly proposed configurations is discussed

For any symmetric, two-axle vehicle it is shown that for perfect steering on a curve there should be zero bending stiffness between the wheelsets. It is further shown that if the bending stiffness is zero, the vehicle lacks dynamic stability as the critical speed of instability, is zero. In this case, the vehicle undergoes a steering oscillation which occurs at the kinematic frequency of a single wheelset and which is a motion in which pure rolling occurs

Similar results are obtained with vehicles with three or more axles if adjacent axles are connected by shear structures. However, it is shown that it is possible to satisfy both the requirements of perfect steering and a non-zero critical speed if the vehicle has zero bending stiffness and if, in addition to adjacent wheelsets being connected in shear, at least one pair of non-adjacent axles are connected by a shear structure.  相似文献   

5.
《JSAE Review》2003,24(3):321-326
In this study, we constructed a fully autonomous two-wheeled vehicle (the Rider Robot) which was used for evaluation of dynamics. As the first step of the study, we constructed the control algorithms and the control system.The control algorithms consist of the standing stability control which keeps the perpendicular motion, and the directional control which follows the target course. These algorithms were determined based on human rider's behavior. The system was constructed using some actuators and sensors.The results show that Rider Robot could follow the target course while keeping the standing stability. Consequently, there is considerable validly in these constructed algorithms and the system.  相似文献   

6.
SUMMARY

For railway vehicles having coned wheels mounted on solid axles there is a conflict between dynamic stability and steering ability

It is shown that the stiffness and kinematic properties of all possible interwheelset connections are characterised by two properties describing the distortional characteristics of the vehicle in plan. Within this framework, the various possibilities for steered wheelsets are considered, and several past and current proposals are reviewed. Using the linear approach to dynamic stabibty and curve negotation the performance of existing and newly proposed configurations is discussed

For any symmetric, two-axle vehicle it is shown that for perfect steering on a curve there should be zero bending stiffness between the wheelsets. It is further shown that if the bending stiffness is zero, the vehicle lacks dynamic stability as the critical speed of instability, is zero. In this case, the vehicle undergoes a steering oscillation which occurs at the kinematic frequency of a single wheelset and which is a motion in which pure rolling occurs

Similar results are obtained with vehicles with three or more axles if adjacent axles are connected by shear structures. However, it is shown that it is possible to satisfy both the requirements of perfect steering and a non-zero critical speed if the vehicle has zero bending stiffness and if, in addition to adjacent wheelsets being connected in shear, at least one pair of non-adjacent axles are connected by a shear structure.  相似文献   

7.
Vehicle Handling Improvement by Active Steering   总被引:10,自引:0,他引:10  
Summary This paper first analyses some stability aspects of vehicle lateral motion, then a coprime factors and linear fractional transformations (LFT) based feedforward and feedback H 8 control for vehicle handling improvement is presented. The control synthesis procedure uses a linear vehicle model which includes the yaw motion and disturbance input with speed and road adhesion variations. The synthesis procedure allows the separate processing of the driver reference signal and robust stabilization problem or disturbance rejection. The control action is applied as an additional steering angle, by combination of the driver input and feedback of the yaw rate. The synthesized controller is tested for different speeds and road conditions on a nonlinear model in both disturbance rejection and driver imposed yaw reference tracking maneuvers.  相似文献   

8.
Summary This paper first analyses some stability aspects of vehicle lateral motion, then a coprime factors and linear fractional transformations (LFT) based feedforward and feedback H 8 control for vehicle handling improvement is presented. The control synthesis procedure uses a linear vehicle model which includes the yaw motion and disturbance input with speed and road adhesion variations. The synthesis procedure allows the separate processing of the driver reference signal and robust stabilization problem or disturbance rejection. The control action is applied as an additional steering angle, by combination of the driver input and feedback of the yaw rate. The synthesized controller is tested for different speeds and road conditions on a nonlinear model in both disturbance rejection and driver imposed yaw reference tracking maneuvers.  相似文献   

9.
For the first time, this paper investigates the application of the concept of Lyapunov exponents to the stability analysis of the nonlinear vehicle model in plane motion with two degrees of freedom. The nonlinearity of the model comes from the third-order polynomial expression between the lateral forces on the tyres and the tyre slip angles. Comprehensive studies on both system and structural stability analyses of the vehicle model are presented. The system stability analysis includes the stability, lateral stability region, and effects of driving conditions on the lateral stability region of the vehicle model in the state space. In the structural stability analysis, the ranges of driving conditions in which the stability of the vehicle model is guaranteed are given. Moreover, through examples, the largest Lyapunov exponent is suggested as an indicator of the convergence rate in which the disturbed vehicle model returns to its stable fixed point.  相似文献   

10.
The general form of the equations o f motion o f multi-body articulated railway vehicles are used to establish the conditions which the elastic stiffness matrix, which describes the nature and configuration o f the suspension elements connecting the various bodies, must satisfy in order to achieve both perfect steering on circular curves and dynamic stability. The resulting criteria are then used to discuss the properties of various multi-axle configurations which are either typical of current practice or possibilities for future designs.  相似文献   

11.
《JSAE Review》1997,18(1):39-44
The aerodynamic influence of a passing vehicle on the motion stability of other vehicles is discussed. According to the results of wind tunnel tests and actual car tests, it is found that the interference phenomenon can be treated as a quasi-steady problem when relative speed is small. The influence of relative speed on vehicle motion stability is also examined. A small relative speed can affect the vehicle motion because of its long acting time.  相似文献   

12.
SUMMARY

The general form of the equations o f motion o f multi-body articulated railway vehicles are used to establish the conditions which the elastic stiffness matrix, which describes the nature and configuration o f the suspension elements connecting the various bodies, must satisfy in order to achieve both perfect steering on circular curves and dynamic stability. The resulting criteria are then used to discuss the properties of various multi-axle configurations which are either typical of current practice or possibilities for future designs.  相似文献   

13.
非线性闭环汽车系统直线行驶稳定性分析   总被引:3,自引:0,他引:3  
秦民  林逸  闵海涛  朱启昕 《汽车工程》2002,24(6):520-523,519
详细研究了驾驶员-汽车闭环系统直线行驶稳定性问题。在线性范围内分析了驾驶员预瞄时间和轮胎刚度对临界车速的影响;在非线性领域内运用Hopf定理等非线性理论研究了当系统失去直线行驶稳定性后的特殖运动形式,并以某一国产汽车为例,验证了该车失去直线行驶稳定性后,将出现稳定的蛇行运动。  相似文献   

14.
An approximate method is presented which produces a handling diagram useful for the study of steady-state turning behaviour at different values of steer angle, path radius and speed In three successive parts the steady state response of simple and more elaborate vehicle models and the stability of the resulting motion are discussed.  相似文献   

15.
This paper devotes both analytical and experimental efforts in developing a comprehensive dynamic model for an articulated steering wheel loader. The general motion of a wheel loader without suspension is described by seven degrees of freedom (DOF) (three for translation and four for rotation) in this model, which can be used to study the problem of wheel loader dynamics on slopes and over obstacles. A scale wheel loader was designed and manufactured to validate the dynamic model in three conditions (turning on level ground, turning on slopes, and passing over obstacles). The test results reasonably agree with the simulation results. The developed dynamic model was found to be useful and could serve as an important tool for analysing the stability of wheel loaders.  相似文献   

16.
Recently, motion control for electric vehicles has gradually gained respect in automotive society due to increased strictness of vehicle safety evaluation over time. Electronic Stability Control (ESC) is the kernel technology, which refers to two-dimensional motion stabilization. Many investigations have demonstrated that Direct Yaw-moment Control (DYC) is an effective and practical way to carry out the ESC of electric vehicles. However, based on the drive train of conventional steering, conventional approaches are using braking to achieve the DYC. This paper proposes a new ESC based on the construction of DYC. The presented approach is based on a core of individual traction control measures for propulsion wheels. This approach not only constrain the longitudinal slip, but also ensure the performance and the effectiveness of two-dimensional motion control. With a proper control, the vehicle can be maintained to a nearly neutral-steering under high speed turning. Hence, the vehicle’s dynamic stability can be enhanced under aggressive driving by yaw-moment control. Evaluation of the entire control system is performed by well-acknowledged software, which demonstrates that the vehicle’s dynamic stability can be enhanced under aggressive driving by the proposed approach.  相似文献   

17.
ABSTRACT

This paper considers the problem of collision avoidance for road vehicles, operating at the limits of friction. A two-level modelling and control methodology is proposed, with the upper level using a friction-limited particle model for motion planning, and the lower level using a nonlinear 3DOF model for optimal control allocation. Motion planning adopts a two-phase approach: the first phase is to avoid the obstacle, the second is to recover lane keeping with minimal additional lateral deviation. This methodology differs from the more standard approach of path-planning/path-following, as there is no explicit path reference used; the control reference is a target acceleration vector which simultaneously induces changes in direction and speed. The lower level control distributes vehicle targets to the brake and steer actuators via a new and efficient method, the Modified Hamiltonian Algorithm (MHA). MHA balances CG acceleration targets with yaw moment tracking to preserve lateral stability. A nonlinear 7DOF two-track vehicle model confirms the overall validity of this novel methodology for collision avoidance.  相似文献   

18.
The possibility of improving both the dynamic stability and curving performance of railway trucks through the use of semi-active control is discussed. According to the direction of vehicle motion, the truck parameters are switched in a longitudinally asymmetric manner. Using a method of evaluation proposed here, the stability of trucks having the same steering ability was examined using linear models. A truck equipped with independently rotating wheels on the trailing axle and with unsymmetric primary suspension has the best performance. A realistic method of achieving this is proposed: using harder primary longitudinal stiffness on the trailing axle and using a primary yaw damper only on the leading, allows bidirectional operation by changing the damping force.  相似文献   

19.
This study proposes a steering control method to improve motorcycle handling and stability. Steer-by-wire (SBW) technology is applied to the motorcycle's steering system to remove characteristic difficulties of vehicle maneuvers. By examining computer simulation using a simplified motorcycle model, the actual rolling angle of the SBW motorcycle is controlled to follow the desired rolling angle intended by the rider. A state feedback control such as linear quadratic control gives the SBW vehicle a good follow-through performance compared with proportional-derivative control because it can decouple rolling motion from the other motions, which affect the rolling motion in the strongly coupled motorcycle system.  相似文献   

20.
(Title: On the Stability of Turns of a Motor Vehicle with and without Tangential Acceleration) As can be shown in the treatment of the steady-state turn, the conditions for stability of a possible turning motion give rise to a limitation of the speed of travel which lies partly under the boundary due to friction limitations. In particular, at transient turns (braking or accelerating in a turn) the stability changes considerably at large absolute values of the tangential acceleration and may lead to a considerable further decrease of the maximum possible speed of travel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号