首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《公路》2017,(7)
现阶段大体积混凝土、高强混凝土以及耐久性混凝土在实际工程中得到了广泛的应用,由水化热引起的温度裂缝问题也越来越被设计人员所关注。水化热引起的温度裂缝经常发生在结构施工初期,宽度较大且具有贯通性,对结构的耐久性和透水性产生不利影响。因此在整个设计、施工以及监理阶段需要对水化热引起的温度应力进行详细验算。依托某特大桥承台大体积混凝土的施工,利用有限元软件模拟水化热过程,对温度、应力提出控制措施,指导实际施工。在施工时采取合理的控制措施,并进行温度数据的采集以验证措施的有效性。  相似文献   

2.
桥墩混凝土的水化热温度分析   总被引:4,自引:0,他引:4  
通过对某桥墩大体积混凝土水化热温度的实测与计算对比分析,阐述了桥墩大体积混凝土水化热温度的发展与变化特点,并提出了防止水化热温度梯度而导致的墩身早期开裂的有效工程措施,为以后的设计与施工提供参考。  相似文献   

3.
以重庆某大桥主墩承台为对象,采用C40低温升低收缩磷渣大体积混凝土,利用有限元软件对其温度应力监测数值进行了仿真研究。结果表明:利用有限元软件,仿真计算低温升低收缩磷渣大体积混凝土水化热,可对混凝土水化热实际情况进行较好的模拟及预测。利用有限元软件,对大桥4#承台水化热进行仿真分析,通过对冷却管采取降温措施,发现在承台内部,最高温为71.25℃,最大的内外温差为18.15℃,水化热得到控制,说明采用冷却管降温可行。通过检测拆模后大桥承台的外观,发现无温度裂缝产生,说明采取合理措施控制大体积混凝土水化热温升,能有效控制温度裂缝的产生。  相似文献   

4.
混凝土水化热引起的温度效应是导致混凝土箱梁早期发生开裂的主要原因之一,严重影响施工质量,成为困扰土木技术人员的难题。为此,对某大桥进行温度场试验,基于箱梁混凝土热传导理论,利用有限元数值分析软件ANSYS,建立该大桥混凝土箱梁块水化热分析的有限元数值模型,对该混凝土箱梁结构的水化热温度场产生的过程进行数值分析,并将仿真分析结果和现场实测数据进行对比,研究早期混凝土箱梁的温度场分布及其时变特点。研究结果表明,采取正确的热学参数,混凝土箱梁温度场有限元数值仿真能准确模拟混凝土箱梁水化热现场试验温度场的分布和发展过程。混凝土箱梁结构的水化热温度梯度规律明显,减小混凝土箱梁内外温度梯度是降低混凝土箱梁早期裂缝的关键。底板中部的温度高于靠近表面位置的达23. 1℃,这是因为底板厚度较大,水化热不宜扩散,因此在混凝土养护过程中要更加注意底板等大尺寸部位的散热。研究结果为混凝土箱梁结构的温度场分析方法提供理论依据,便于准确掌握混凝土箱梁的温度应力,明确受温度效应影响最大的位置,为施工过程中的混凝土箱梁的温度控制提供参考和借鉴。  相似文献   

5.
针对大跨连续梁桥箱梁0~#块施工过程中的水化热问题,基于有限元模型对冷却管通水循环的降温效果和防裂效果进行了比较分析。基于热交换平衡原理,考虑环境因素和材料特性的影响,采用Midas/FEA软件,在箱梁0~#块无冷却管通水循环模型与实测温度场数据相吻合的条件下,比较了箱梁0~#块无冷却管和冷却管通水循环计算模型的混凝土降温效果、温度应力和最小裂缝系数;通过对计算结果的分析,进一步明确了冷却管通水循环对0~#块混凝土水化热裂缝防控的有效性。结果表明:冷却管通水循环可显著地降低箱梁0~#块混凝土的温度峰值、应力峰值和表面开裂几率,为大跨连续梁桥箱梁0~#块高强混凝土施工质量控制提供了有效措施。  相似文献   

6.
为避免长悬臂混凝土盖梁施工期间产生较高的水化热导致温度裂缝,对两座长悬臂盖梁开展了水化热实时监测,并在盖梁内部埋置相应的应力传感器同步实测盖梁混凝土早龄期力学性能。采用有限元软件Midas FEA建立相应梁段的时变模型,研究盖梁混凝土水化热温度场和应力场,并对绝热温升进行参数分析。结果表明:长悬臂盖梁在施工期间会产生持续10 d的水化热,在混凝土浇筑后快速达到峰值温度,此时盖梁外部混凝土处于拉应力状态,若内外温差过大容易出现温度裂缝。所以实时监测控制和长悬臂盖梁水化热非常必要。  相似文献   

7.
苏通大桥辅桥箱梁节段水化热效应的仿真分析   总被引:4,自引:1,他引:4  
结合实际工程,分析了大体积混凝土水化热是使其表面产生裂缝的主要原因之一。采用三维瞬态温度场理论,利用有限元程序ANSYS对苏通大桥连续刚构墩顶现浇块的水化热效应进行了数值模拟,分析了箱梁水化热温度场和应力场的分布规律。结果表明,水化热引起的温度应力使底板内外表面受拉,混凝土内部受压,这样的温度应力是自平衡的。水化热效应引起的早期温度应力是不容忽视的,提出了控制水化热温度及温度应力的合理建议,有一定的工程参考价值。  相似文献   

8.
通过对某寒冷气温下施工的斜拉桥承台大体积混凝土水化热进行数值模拟和现场监测承台水化热温度,对比分析低温冷却水和长冷却管管长对承台水化热温度发展变化规律的影响。研究结果表明,综合考虑混凝土入模温度、混凝土配合比、外加剂、冷却管的管径和布置形式以及混凝土养护方式等因素,采用低温冷却水和长冷却管管长方案,能有效避免大体积混凝土水化热温度产生裂缝,可为同类大体积混凝土在寒冷气温下施工提供参考。  相似文献   

9.
为研究冷却水对大体积混凝土温度场的影响和发展变化,文章以金安金沙江大桥大体积混凝承台浇筑工程为例,对其施工和养护期间水化热温度进行连续监测。根据实测水化热温度进行冷却水流速和流量控制,提出采用变速控制水冷管流速的方法。利用瞬态温度场三维有限元理论方法,应用有限元计算软件建立模型,进行水冷管参数对比分析。分析结果表明:冷却水对混凝土降温有显著效果,在水泥用量不变的情况下,合理调整水冷管流速等因素能有效控制水化热温升变化,防止有害裂缝的产生。  相似文献   

10.
袁明  霍红杰  颜东煌 《中外公路》2011,31(3):138-142
由于在高墩大跨连续刚构桥温度裂缝,因此笔者基于温度场热量传导理论建立有限元仿真模型进行水化热理论计算,并结合贵州某高墩大跨连续刚构桥0#块施工浇筑和养护过程中箱梁水化热温度现场监测,通过实际数据与有限元模型理论计算对比,分析箱梁混凝土水化热温度发展变化特点.  相似文献   

11.
温度应力已被认为是混凝土箱梁开裂的主要原因之一。为了掌握水化热温度沿箱梁截面的分布规律,文章结合预应力混凝土连续梁桥的箱梁施工实践,运用有限元软件建立了箱形梁的实体模型,模拟实际混凝土水化热温度场分布,分析了箱梁底板应力时程变化,并与实测资料进行了对比分析,对箱梁温度控制提出必要的措施,为混凝土箱梁桥的设计和施工提供了指导。  相似文献   

12.
文章以甘肃地区永古高速柳条河大桥为研究背景,分析了混凝土箱梁水化热温度时程曲线和温差的分布形式,研究了混凝土箱梁水化热温度的变化规律,并对该地区典型环境下混凝土裂缝的控制方法提出了建议,为相似环境地区提高混凝土箱梁的质量提供参考。  相似文献   

13.
针对大跨连续刚构桥承台大体积混凝土结构施工过程中的水化热问题,利用有限元分析软件进行了模拟分析,并对承台施工过程中的水化热温度进行了细致的监测。经过分析,得出有限元的模拟计算结果与现场监测的温度变化趋势一致,与承台内部的最高温度相差约9%。计算模型中对流边界条件的选取、承台浇筑的分层方法、冷却管水流的模拟等与实际情况的差异是影响模拟精度的主要因素。通过不同测点布置形式可以得到混凝土内部的温度梯度分布,远离承台中心位置温度梯度较大,应采取良好的保温保湿措施防止温差下混凝土的开裂。施工过程采用计算、监测以及现场养护等综合技术措施,较好地避免了大体积承台混凝土施工期间温度裂缝的出现,确保了承台的施工质量。  相似文献   

14.
根据热传导有限单元法原理,采用热-应力耦合的方法对混凝土浇筑水化热引起的斜拉桥空心塔柱的温度效应进行分析,运用ANSYS进行仿真分析,得到温度场分布特点以及温度应力的发展规律,为控制施工中的水化热温度裂缝提供了理论依据以及防止开裂措施。  相似文献   

15.
承台大体积混凝土水化热分析与施工控制   总被引:5,自引:0,他引:5  
结合援孟加拉国中孟友谊六桥主桥承台设计与施工,利用Midas/Civil有限元计算分析软件对承台大体积混凝土水化热进行仿真分析,掌握水化热变化规律及其应力影响,据此指导现场施工控制。结果表明:仿真分析很好地反映了水化热变化规律及其应力影响,混凝土质量优良,没有出现温度裂缝,可供类似大体积混凝土设计与施工借鉴。  相似文献   

16.
为提高混凝土桥墩表面抗裂性能,对其施工期水化热及表面抗裂影响因素进行研究。选取尺寸为1.5m×1.2m×1.6m的重力式矩形混凝土桥墩,采用ANSYS建立有限元模型,对桥墩的水化热温度场与应力场、养护工艺及构件设计参数对水化热温度场及其表面开裂的影响进行分析。分析结果表明:混凝土桥墩水化热过程中,由于钢筋传热,对混凝土表面温度场及箍筋、纵筋相应位置混凝土表面应力场产生影响。采取养护措施对预防混凝土早期开裂效果较好,混凝土表面应力值比无养护约下降0.6 MPa。桥墩表面温度应力随混凝土保护层厚度增大而减小,随箍筋直径增大而增大,箍筋间距变化对其影响不明显。  相似文献   

17.
大跨预应力混凝土箱梁桥混凝土的水化热极可能是混凝土出现早期可见裂缝的重要因素之一。该文对某大跨预应力混凝土箱梁桥左右幅0#块在不同配合比条件下进行了水化热温度及应力测试,基于混凝土早龄期力学性能发展规律的实测结果,应用有限元软件对箱梁混凝土水化热中的箱梁温度场和应力场进行了时程分析。结果显示:水化热计算值与实测值吻合良好,过高的水化热是大体积混凝土早期开裂的主要原因之一。  相似文献   

18.
王军  李峰  王韶翔 《公路》2007,(11):173-177
大体积混凝土在现代的土木工程施工中已非常普遍,但常常出现裂缝和变形,严重影响了结构的整体性和耐久性。本文通过利用结构有限元分析程序MIDAS/Civil对一座待建桥梁承台进行水化热分析研究,总结了承台混凝土在水化热影响下温度的分布规律以及温度随时间的变化规律,同时提出了防止混凝土开裂的一些应对措施。  相似文献   

19.
高强混凝土在大体积混凝土中应用时会产生大量的水化热,在混凝土中心位置形成一个高温带导致内外温差较大,从而使混凝土产生裂缝,因此研究在施工期的水化热温度场具有重要意义.以江西鄱阳湖大桥为工程背景,现场测试了Π型主梁浇筑过程中的大量温度数据,通过分析得到了Π型梁顶板混凝土对外界气温敏感,水化热对其影响较小;梁肋大体积混凝土在施工期由于水泥水化作用,不仅会在结构内部产生较高的温度,而且容易使混凝土表面与中心产生较大的温差,导致混凝土产生裂缝.因此,施工时应采取相应的温控措施,减小混凝土的水化热.  相似文献   

20.
公路建设中,尤其是桥梁承台等大体积混凝土的施工过程中,一般采用冷却水降温方式处理由水化热造成的病害,以更好地控制混凝土因水化热引起的开裂。采用有限元模型对混凝土内部降温过程进行模拟,并分析不同冷却水温度下降温方案的优劣,分析结果可为同类工程设计和施工提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号