首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
There are two kinds of stability associated with traffic flow problems – string stability (or car-following stability) and traffic flow stability. We provide a clear distinction between traffic flow stability and string stability, and such a distinction has not been recognized in the literature, thus far. String stability is stability with respect to intervehicular spacing; intuitively, it ensures the knowledge of the position and velocity of every vehicle in the traffic, within reasonable bounds of error, from the knowledge of the position and velocity of a vehicle in the traffic. String stability is analyzed without adding vehicles to or removing vehicles from the traffic. On the other hand, traffic flow stability deals with the evolution of traffic velocity and density in response to the addition and/or removal of vehicles from the flow. Traffic flow stability can be guaranteed only if the velocity and density solutions of the coupled set of equations is stable, i.e., only if stability with respect to automatic vehicle following and stability with respect to density evolution is guaranteed. Therefore, the flow stability and critical capacity of any section of a highway is dependent not only on the vehicle following control laws and the information used in their synthesis, but also on the spacing policy employed by the control system. Such a dependence has practical consequences in the choice of a spacing policy for adaptive cruise control laws and on the stability of the traffic flow consisting of vehicles equipped with adaptive cruise control features on the existing and future highways. This critical dependence is the subject of investigation here.  相似文献   

2.
Driver assistance systems support drivers in operating vehicles in a safe, comfortable and efficient way, and thus may induce changes in traffic flow characteristics. This paper puts forward a receding horizon control framework to model driver assistance and cooperative systems. The accelerations of automated vehicles are controlled to optimise a cost function, assuming other vehicles driving at stationary conditions over a prediction horizon. The flexibility of the framework is demonstrated with controller design of Adaptive Cruise Control (ACC) and Cooperative ACC (C-ACC) systems. The proposed ACC and C-ACC model characteristics are investigated analytically, with focus on equilibrium solutions and stability properties. The proposed ACC model produces plausible human car-following behaviour and is unconditionally locally stable. By careful tuning of parameters, the ACC model generates similar stability characteristics as human driver models. The proposed C-ACC model results in convective downstream and absolute string instability, but not convective upstream string instability observed in human-driven traffic and in the ACC model. The control framework and analytical results provide insights into the influences of ACC and C-ACC systems on traffic flow operations.  相似文献   

3.
We present an adaptive cruise control (ACC) strategy where the acceleration characteristics, that is, the driving style automatically adapts to different traffic situations. The three components of the concept are the ACC itself, implemented in the form of a car-following model, an algorithm for the automatic real-time detection of the traffic situation based on local information, and a strategy matrix to adapt the driving characteristics (that is, the parameters of the ACC controller) to the traffic conditions. Optionally, inter-vehicle and infrastructure-to-car communication can be used to improve the accuracy of determining the traffic states. Within a microscopic simulation framework, we have simulated the complete concept on a road section with an on-ramp bottleneck, using empirical loop-detector data for an afternoon rush-hour as input for the upstream boundary. We found that the ACC vehicles improve the traffic stability and the dynamic road capacity. While traffic congestion in the reference scenario was completely eliminated when simulating a proportion of 25% ACC vehicles, travel times were already significantly reduced for much lower penetration rates. The efficiency of the proposed driving strategy even for low market penetrations is a promising result for a successful application in future driver assistance systems.  相似文献   

4.
This paper examines the impact of having cooperative adaptive cruise control (CACC) embedded vehicles on traffic flow characteristics of a multilane highway system. The study identifies how CACC vehicles affect the dynamics of traffic flow on a complex network and reduce traffic congestion resulting from the acceleration/deceleration of the operating vehicles. An agent-based microscopic traffic simulation model (Flexible Agent-based Simulator of Traffic) is designed specifically to examine the impact of these intelligent vehicles on traffic flow. The flow rate of cars, the travel time spent, and other metrics indicating the evolution of traffic congestion throughout the lifecycle of the model are analyzed. Different CACC penetration levels are studied. The results indicate a better traffic flow performance and higher capacity in the case of CACC penetration compared to the scenario without CACC-embedded vehicles.  相似文献   

5.
Vehicle-to-vehicle (V2V) communications under the connected vehicle context have the potential to provide new paradigms to enhance the safety, mobility and environmental sustainability of surface transportation. Understanding the information propagation characteristics in space and time is a key enabler for V2V-based traffic systems. Most existing analytical models assume instantaneous propagation of information flow through multi-hop communications. Such an assumption ignores the spatiotemporal relationships between the traffic flow dynamics and V2V communication constraints. This study proposes a macroscopic two-layer model to characterize the information flow propagation wave (IFPW). The traffic flow propagation is formulated in the lower layer as a system of partial differential equations based on the Lighthill-Whitham-Richards model. Due to their conceptual similarities, the upper layer adapts and modifies a spatial Susceptible-Infected epidemic model to describe information dissemination between V2V-equipped vehicles using integro-differential equations. A closed-form solution is derived for the IFPW speed under homogeneous conditions. The IFPW speed is numerically determined for heterogeneous conditions. Numerical experiments illustrate the impact of traffic density and market penetration of V2V-equipped vehicles on the IFPW speed. The proposed model can capture the spatiotemporal relationships between the traffic and V2V communication layers, and aid in the design of novel information propagation strategies to manage traffic conditions under V2V-based traffic systems.  相似文献   

6.
The role of the driver in the longitudinal car following control task will change from operator to supervisor with most of manual control replaced by automation as adaptive cruise control (ACC) technologies become commonplace. The extent to which manual control can be replaced by ACC will be determined by many factors. An important issue is the compatibility between ACC performance and the driver’s expectations.This paper describes the results of a simulation study of the performance of ACC relative to driver expectation. Driver’s expectation is quantitatively defined as the expected deceleration rate for several time-to-collision (TTC) levels, and an absolute minimum TTC that drivers tried to avoid in all cases. A two-level ACC algorithm was used to simulate the performance of an ACC equipped vehicle in various scenarios, and the result was compared to the driver’s expectations. The investigation has focused on scenarios which ACC is able to manage technically, but where driver expectations might be breached.By systematically changing variables such as the parameters of the ACC algorithms, traffic scenarios and time-headway settings, a large number of situations have been tested. The results have revealed that whilst appropriate ACC settings can be found which will meet the driver’s expectations, the ACC settings that are most capable in a range of traffic conditions are not necessarily the most user-friendly. A discussion on the implications of the findings is also presented.  相似文献   

7.
This paper reports on real data testing of a real-time freeway traffic state estimator, with a particular focus on its adaptive capabilities. The pursued general approach to the real-time adaptive estimation of complete traffic state in freeway stretches or networks is based on stochastic macroscopic traffic flow modeling and extended Kalman filtering. One major innovative feature of the traffic state estimator is the online joint estimation of important model parameters (free speed, critical density, and capacity) and traffic flow variables (flows, mean speeds, and densities), which leads to three significant advantages of the estimator: (1) avoidance of prior model calibration; (2) automatic adaptation to changing external conditions (e.g. weather and lighting conditions, traffic composition, control measures); (3) enabling of incident alarms. These three advantages are demonstrated via suitable real data testing. The achieved testing results are satisfactory and promising for subsequent applications.  相似文献   

8.
9.
An extended open system such as traffic flow is said to be convectively unstable if perturbations of the stationary state grow but propagate in only one direction, so they eventually leave the system. By means of data analysis, simulations, and analytical calculations, we give evidence that this concept is relevant for instabilities of congested traffic flow. We analyze detector data from several hundred traffic jams and propose estimates for the linear growth rate, the wavelength, the propagation velocity, and the severity of the associated bottleneck that can be evaluated semi-automatically. Scatter plots of these quantities reveal systematic dependencies. On the theoretical side, we derive, for a wide class of microscopic and macroscopic traffic models, analytical criteria for convective and absolute linear instabilities. Based on the relative positions of the stability limits in the fundamental diagram, we divide these models into five stability classes which uniquely determine the set of possible elementary spatiotemporal patterns in open systems with a bottleneck. Only two classes, both dominated by convective instabilities, are compatible with observations. By means of approximate solutions of convectively unstable systems with sustained localized noise, we show that the observed spatiotemporal phenomena can also be described analytically. The parameters of the analytical expressions can be inferred from observations, and also (analytically) derived from the model equations.  相似文献   

10.
We propose a macroscopic model of lane‐changing that is consistent with car‐following behavior on a two‐lane highway. Using linear stability theory, we find that lane‐changing affects the stable region and the propagation speeds of the first‐order and second‐order waves. In analyzing a small disturbance, our model effectively reproduces certain non‐equilibrium traffic‐flow phenomena—small disturbance instability, stop‐and‐go waves, and local clusters that are affected by lane‐changing. The model also gives the flow‐density relationships in terms of the actual flow rate, the lane‐changing rate, and the difference between the potential flow rate (the flow rate that would have occurred without lane‐changing) and the actual flow rate. The relationships between the actual flow rate and traffic density and between the lane‐changing rate and traffic density follow a reverse‐lambda shape, which is largely consistent with observed traffic phenomena.  相似文献   

11.
Vehicular traffic congestion in a vehicle-to-vehicle (V2V) communication environment can lead to congestion effects for information flow propagation. Such congestion effects can impact whether a specific information packet of interest can reach a desired location, and if so, in a timely manner to influence the traffic system performance. Motivated by the usefulness and timeliness of information propagation, this paper aims to characterize the information flow propagation wave (IFPW) for an information packet in a congested V2V communication environment under an information relay control strategy. This strategy seeks to exclude information that is dated in the communication buffer under a first-in, first-out queue discipline, from being relayed if the information flow regime is congested. It trades off the need to enable the dissemination of every information packet as far as possible, against the congestion effects that accrue because of the presence of multiple information packets. A macroscopic two-layer model is proposed to characterize the IFPW. The upper layer is formulated as integro-differential equations to characterize the information dissemination in space and time under this control strategy. The lower layer adopts the Lighthill-Whitham-Richards model to capture the traffic flow dynamics. Based on the upper layer model, a necessary condition is derived which quantifies the expected time length that needs to be reserved for broadcasting the information packet of interest so as to ensure the formation of an IFPW under a given density of V2V-equipped vehicles. When the necessary condition is satisfied under homogeneous conditions, it is shown that the information packet can be propagated at an asymptotic speed whose value can be derived analytically. Besides, under the proposed control strategy, only a proportion of vehicles (labeled asymptotic density of informed vehicles) can receive the specific information packet, which can be estimated by solving a nonlinear equation. The asymptotic IFPW speed, the asymptotic density of informed vehicles, and the necessary condition for the IFPW, help in evaluating the timeliness of information propagation and the influence of traffic dynamics on information propagation. In addition, the proposed model can be used to numerically estimate the IFPW speed for heterogeneous conditions, which can aid in the design of traffic management strategies built upon the timely propagation of information through V2V communication.  相似文献   

12.
Effective inter-vehicle communication is fundamental to a decentralized traffic information system based on mobile ad hoc vehicle networks. Here we model the information propagation process through inter-vehicle communication when the vehicle spacing follows a general i.i.d. distribution. Equations for the expected value and variance of propagation distance are derived. In addition, we provide simple equations for the expected number of vehicles covered and the probability distribution of propagation distance. This research advances on an earlier study where the vehicle spacing is assumed to follow an exponential distribution. This paper generalizes the earlier results and potentially enables a design for robust information propagation by allowing for examination of the impact of different headway distributions. Within the new modeling framework, we also compute connectivity between two vehicles.  相似文献   

13.
The paper proposes a first-order macroscopic stochastic dynamic traffic model, namely the stochastic cell transmission model (SCTM), to model traffic flow density on freeway segments with stochastic demand and supply. The SCTM consists of five operational modes corresponding to different congestion levels of the freeway segment. Each mode is formulated as a discrete time bilinear stochastic system. A set of probabilistic conditions is proposed to characterize the probability of occurrence of each mode. The overall effect of the five modes is estimated by the joint traffic density which is derived from the theory of finite mixture distribution. The SCTM captures not only the mean and standard deviation (SD) of density of the traffic flow, but also the propagation of SD over time and space. The SCTM is tested with a hypothetical freeway corridor simulation and an empirical study. The simulation results are compared against the means and SDs of traffic densities obtained from the Monte Carlo Simulation (MCS) of the modified cell transmission model (MCTM). An approximately two-miles freeway segment of Interstate 210 West (I-210W) in Los Ageles, Southern California, is chosen for the empirical study. Traffic data is obtained from the Performance Measurement System (PeMS). The stochastic parameters of the SCTM are calibrated against the flow-density empirical data of I-210W. Both the SCTM and the MCS of the MCTM are tested. A discussion of the computational efficiency and the accuracy issues of the two methods is provided based on the empirical results. Both the numerical simulation results and the empirical results confirm that the SCTM is capable of accurately estimating the means and SDs of the freeway densities as compared to the MCS.  相似文献   

14.
This paper presents a thorough microscopic simulation investigation of a recently proposed methodology for highway traffic estimation with mixed traffic, i.e., traffic comprising both connected and conventional vehicles, which employs only speed measurements stemming from connected vehicles and a limited number (sufficient to guarantee observability) of flow measurements from spot sensors. The estimation scheme is tested using the commercial traffic simulator Aimsun under various penetration rates of connected vehicles, employing a traffic scenario that features congested as well as free-flow conditions. The case of mixed traffic comprising conventional and connected vehicles equipped with adaptive cruise control, which feature a systematically different car-following behavior than regular vehicles, is also considered. In both cases, it is demonstrated that the estimation results are satisfactory, even for low penetration rates.  相似文献   

15.
Vehicle longitudinal control systems such as (commercially available) autonomous Adaptive Cruise Control (ACC) and its more sophisticated variant Cooperative ACC (CACC) could potentially have significant impacts on traffic flow. Accurate models of the dynamic responses of both of these systems are needed to produce realistic predictions of their effects on highway capacity and traffic flow dynamics. This paper describes the development of models of both ACC and CACC control systems that are based on real experimental data. To this end, four production vehicles were equipped with a commercial ACC system and a newly developed CACC controller. The Intelligent Driver Model (IDM) that has been widely used for ACC car-following modeling was also implemented on the production vehicles. These controllers were tested in different traffic situations in order to measure the actual responses of the vehicles. Test results indicate that: (1) the IDM controller when implemented in our experimental test vehicles does not perceptibly follow the speed changes of the preceding vehicle; (2) strings of consecutive ACC vehicles are unstable, amplifying the speed variations of preceding vehicles; and (3) strings of consecutive CACC vehicles overcome these limitations, providing smooth and stable car following responses. Simple but accurate models of the ACC and CACC vehicle following dynamics were derived from the actual measured responses of the vehicles and applied to simulations of some simple multi-vehicle car following scenarios.  相似文献   

16.
The paper presents a unified macroscopic model-based approach to real-time freeway network traffic surveillance as well as a software tool RENAISSANCE that has been recently developed to implement this approach for field applications. RENAISSANCE is designed on the basis of stochastic macroscopic freeway network traffic flow modeling, extended Kalman filtering, and a number of traffic surveillance algorithms. Fed with a limited amount of real-time traffic measurements, RENAISSANCE enables a number of freeway network traffic surveillance tasks, including traffic state estimation and short-term traffic state prediction, travel time estimation and prediction, queue tail/head/length estimation and prediction, and incident alarm. The traffic state estimation and prediction lay the operating foundation of RENAISSANCE since RENAISSANCE bases the other traffic surveillance tasks on its traffic state estimation or prediction results. The paper first introduces the utilized stochastic macroscopic freeway network traffic flow model and a real-time traffic measurement model, upon which the complete dynamic system model of RENAISSANCE is established with special attention to the handling of some important model parameters. The algorithms for the various traffic surveillance tasks addressed are described along with the functional architecture of the tool. A simulation test was conducted via application of RENAISSANCE to a hypothetical freeway network example with a sparse detector configuration, and the testing results are presented in some detail. Final conclusions and future work are outlined.  相似文献   

17.
A real time control policy minimizing total intersection delays subject to queue length constraints at an isolated signalized intersection is developed in this paper. The policy is derived from a new traffic model which describes the simultaneous evolution of queue lengths of two conflicting traffic streams, controlled by a traffic light, in both time and space. The model is based on the examination of shock waves generated upstream of the stop lines by the intermittent service of traffic at the signal. The proposed policy was tested against the existing pre-timed control policy at a high volume intersection and it was found superior, especially when demands increase well above the saturation level.  相似文献   

18.
A macroscopic model for dynamic traffic flow is presented. The main goal of the model is the real time simulation of large freeway networks with multiple sources and sinks. First, we introduce the model in its discrete formulation and consider some of its properties. It turns out, that our non-hydrodynamical ansatz for the flows results in a very advantageous behavior of the model. Next the fitting conditions at junctions of a traffic network are discussed. In the following sections we carry out a continuous approximation of our discrete model in order to derive stationary solutions and to consider the stability of the homogeneous one. It turns out, that for certain conditions unstable traffic flow occurs. In a subsequent section, we compare the stability of the discrete model and the corresponding continuous approximation. This confirms in retrospection the close similarities of both model versions. Finally we compare the results of our model with the results of another macroscopic model, that was recently suggested by Kerner and Konhäuser [Phys. Rev. E 48, 2335–2338 (1993)].  相似文献   

19.
An adaptive control model of a network of signalized intersections is proposed based on a discrete-time, stationary, Markov decision process. The model incorporates probabilistic forecasts of individual vehicle actuations at downstream inductance loop detectors that are derived from a macroscopic link transfer function. The model is tested both on a typical isolated traffic intersection and a simple network comprised of five four-legged signalized intersections, and compared to full-actuated control. Analyses of simulation results using this approach show significant improvement over traditional full-actuated control, especially for the case of high volume, but not saturated, traffic demand.  相似文献   

20.
Probabilistic models describing macroscopic traffic flow have proven useful both in practice and in theory. In theoretical investigations of wide-scatter in flow–density data, the statistical features of flow density relations have played a central role. In real-time estimation and traffic forecasting applications, probabilistic extensions of macroscopic relations are widely used. However, how to obtain such relations, in a manner that results in physically reasonable behavior has not been addressed. This paper presents the derivation of probabilistic macroscopic traffic flow relations from Newell’s simplified car-following model. The probabilistic nature of the model allows for investigating the impact of driver heterogeneity on macroscopic relations of traffic flow. The physical features of the model are verified analytically and shown to produce behavior which is consistent with well-established traffic flow principles. An empirical investigation is carried out using trajectory data from the New Generation SIMulation (NGSIM) program and the model’s ability to reproduce real-world traffic data is validated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号