首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
商合杭铁路芜湖长江公铁大桥主桥为主跨588m的双塔双索面矮塔箱桁组合梁斜拉桥,2号和3号主墩均采用门形钢筋混凝土桥塔,塔高分别为155m和130.5m。桥塔设上、下2道横梁,下塔柱外倾,上塔柱内倾。该桥塔柱采用液压爬模分节施工,在两侧上、下塔柱间分别设置钢管横撑和临时对拉钢绞线;下横梁采用落地支架法施工,上横梁采用"牛腿+支架"法施工,上、下横梁混凝土与塔柱同步浇筑;索塔锚固区采用钢锚梁拉索锚固体系与预应力锚固体系相结合的方式锚固,塔柱预应力采用"#"形布置,利用定位支架精确定位钢锚梁。在施工期间,采用"零状态"测量+相对设站法定位等措施控制塔柱线形;并采用高性能混凝土抗裂技术防止大体积混凝土表面开裂。  相似文献   

2.
崔巍  傅新军  陈相  支超 《桥梁建设》2020,50(2):111-116
商合杭铁路芜湖长江公铁大桥主桥为主跨588 m的双塔双索面高低塔箱桁组合梁斜拉桥,该桥2号墩桥塔采用塔梁同步施工,索塔锚固区采用钢锚梁拉索锚固体系与平行钢丝环向预应力锚固体系相结合的方式锚固。为提高测量精度,精确定位钢锚梁,在分析钢锚梁定位精度影响因素的基础上进行主桥施工控制网优化;在自然环境“零”状态、外部荷载“零”状态下对塔柱变形进行监测,获取施工误差引起的塔柱变形量,用于修正钢锚梁定位坐标;采用全站仪精密三角高程测量法、三角高程差分法、侧边交会法相结合的办法将施工控制网高程、平面坐标传递至塔柱待施工段基准点,获取塔柱待施工段基准点在施工控制网投影面的三维坐标,采用相对设站法完成钢锚梁高精度、快速定位。  相似文献   

3.
嘉鱼长江公路大桥主桥为主跨920m的双塔单侧混合梁斜拉桥。该桥桥塔采用钻石形混凝土结构,由上、中、下塔柱,中上、中下塔柱结合段,下横梁和塔座构成,北塔高235m、南塔高251.41m,两塔下横梁以上结构保持一致。该桥北塔、南塔各有30对斜拉索,第1和第2对斜拉索在塔壁混凝土齿块上直接锚固;第3~30对斜拉索锚固采用"钢锚梁+钢牛腿"的形式,钢锚梁采用单锚梁结构,1根锚梁锚固4根斜拉索。为减小超高桥塔常见的混凝土开裂病害,在桥塔混凝土中掺入聚丙烯腈单丝纤维、聚丙烯粗纤维进行防裂抗裂处理。针对北塔下塔柱较短、下塔柱和下横梁受力不利的情况,经方案比选,采用先浇部分下横梁的施工方案,有效减小下横梁混凝土收缩开裂的风险。  相似文献   

4.
某(105+180+105) m波形钢腹板-PC组合梁矮塔斜拉桥桥塔采用外倾式分肢双塔柱,外倾15°,外观呈Y形。针对桥塔先塔后梁施工过程中上塔柱塔根内侧拉应力和塔顶横向变形过大的问题,提出先塔后梁增加临时对拉索和塔梁同步施工2种施工优化方案,采用MIDAS Civil软件建立有限元模型,研究各施工优化方案对桥梁结构受力性能的影响,并进行综合比选。结果表明:施工过程中,2种施工优化方案均能将塔根拉应力减小至材料抗拉强度设计值以下,且塔梁同步施工方案塔顶横向变形比先塔后梁施工方案最大减小40.2%;成桥状态时,2种施工优化方案的斜拉索成桥索力值与设计成桥索力值比较接近,且误差均在5%以内,2种施工优化方案对成桥质量控制无不利影响;通过工期、工程造价、工程质量和施工安全方面的比较,经综合考虑,该桥桥塔施工采用塔梁同步施工方案。工程实践证明塔梁同步施工方案实施效果较好。  相似文献   

5.
正2016年10月10日,武汉四环线青山长江公路大桥南桥塔19号墩第一节塔柱混凝土浇筑完成(见图1),标志着青山长江大桥进入桥塔施工阶段。武汉青山长江大桥主桥采用主跨938 m双塔钢箱及钢箱结合梁斜拉桥方案,中跨为钢箱梁,边跨为钢箱结合梁,桥塔为A形塔,空间索面。桥塔高283.5m,横桥向塔柱外侧斜率为1/9.317,内侧斜  相似文献   

6.
大岳高速洞庭湖大桥主桥为(1 480+453.6)m双塔双跨钢桁架悬索桥,桥塔采用门式框架结构,君山侧桥塔下横梁采用单箱单室预应力混凝土结构,高7.0~17.0m,顶面宽10.793m。针对该桥桥塔下横梁结构特点和施工难点,从施工可行性、安全性、经济性以及工期等方面,对塔梁同步、异步施工方案进行比选,确定采用塔梁异步施工方案。塔柱正常爬模施工,待施工塔柱至5号节段,在下横梁与塔柱相交截面位置预埋下横梁钢筋及预应力系统,同时搭设下横梁落地施工支架,塔柱施工过下横梁位置后,进行下横梁异步施工。下横梁施工支架由钢管桩落地支撑、型钢拱形桁架及底模三部分组成。下横梁与塔柱结合面连接钢筋采用Ⅰ级接头质量标准全断面接头。施工中还采取了预应力线形控制、塔柱稳定性及塔柱根部应力控制、混凝土裂纹控制等关键技术措施。  相似文献   

7.
沪通长江大桥主航道桥为主跨1 092m的双塔钢桁梁斜拉桥,桥塔高330m,塔身采用C60混凝土,单塔混凝土方量超过6万方(不含塔座)。为降低桥塔混凝土开裂风险,采用等温量热和变温变形试验确定水泥水化调控材料掺量以及复合膨胀材料配比,通过缩尺模型试验研究混凝土抗裂性能,基于此制备抗裂混凝土并应用于29号墩桥塔施工中。结果表明:0.2%掺量的水化调控材料可降低水泥水化放热速率峰值约50%;掺入配比为50%CaO+50%MgO的膨胀材料可增加混凝土温升阶段膨胀变形约1倍,减小温降阶段收缩变形约30%;与普通混凝土相比,抗裂混凝土模型中心温度峰值降低了6.4℃,膨胀变形增大了1倍以上,收缩变形减小100με;29号墩桥塔采用抗裂混凝土施工,显著降低了实体结构收缩拉应力与开裂风险。  相似文献   

8.
武汉二七长江大桥主桥桥塔施工关键技术   总被引:3,自引:2,他引:1  
针对武汉二七长江大桥主桥桥塔施工工期紧、大体积混凝土构件裂缝控制及高空作业难度大、施工风险高等问题,该桥塔柱采用爬模施工,横梁采用满堂支架法施工,上塔柱采取塔梁同步施工技术.塔柱采用改进的液压自爬模系统和大节段模板、分竖向6 m大节段施工;为控制裂缝,下塔柱第1节与塔座混凝土同时灌注,横梁分2层施工,中塔柱合龙段施工时增设水平联结系以锁定两肢中塔柱;采用接力泵、振捣坐标化管理及有针对性的养护措施确保高空混凝土施工及质量;塔梁同步施工阶段,根据塔形变形曲线精确定位索道管,并设置高空防护平台、封闭液压自爬模系统等措施确保施工安全.  相似文献   

9.
摩洛哥穆罕默德六世大桥主桥为(183+376+183)m双塔斜拉桥,全曲面梭形混凝土桥塔4个塔肢在两端合并整体,在与基础相连的下塔柱处采用混凝土裙板连接,与主梁采用格构式纵横梁固结体系。桥塔塔肢采用爬模施工,塔梁固结段采用托架施工。桥塔施工过程中,在桥塔中心线设置多功能钢管支架结构,作为布料机平台、施工平台及电梯附着结构;采用大调幅多卡自动爬升模板,运用三角插板实现截面变化,爬模结构内设计可调节斜撑杆件,调节架体结构倾斜角度;下塔柱施工时,节段接缝采用装饰槽,实现裙板装饰花纹效果,在横桥向裙板交汇处设置预应力加强板,实现塔肢和裙板同步施工,并在下塔柱设置对拉结构,控制桥塔线形;塔肢和格构式纵横梁固结段一起浇筑;在上塔柱设置对撑结构,控制桥塔受拉应力。  相似文献   

10.
安庆长江铁路大桥主桥桥塔施工关键技术   总被引:1,自引:0,他引:1  
安庆长江铁路大桥主桥为双塔三索面钢桁梁斜拉桥,桥塔为上倒Y形、下钻石形混凝土结构,高210m.根据该桥塔超高、截面大且设置双层主筋的特点,塔座及下塔柱底节8.5m采用现浇模板支架法施工,其余均采用6 m节段液压爬模施工;横梁采用钢管柱支架法、分2层与塔柱结合段同步施工;上塔柱节段采取塔梁同步技术施工.施工时,在塔柱内设置劲性骨架,改进液压爬模系统,在中塔柱两塔肢间设4道钢管横撑;合理配置机械设备,采取大体积混凝土施工工艺控制技术;并采取桥塔线形测量控制等措施确保了施工安全和质量.该桥塔已于2012年9月14日施工完成.  相似文献   

11.
为研究斜拉桥不同方案的H形混凝土桥塔在横桥向地震作用下的破坏模式,以某双塔斜拉桥(桥塔采用H形钢筋混凝土塔)为背景,设计制作2个缩尺比为1/20的全桥模型(桥塔分别采用强柱弱梁和强梁弱柱方案)进行振动台试验,观测桥塔破坏过程,测量桥塔基本周期变化及桥塔加速度和位移响应。结果表明:随着地震激励强度的增强,强梁弱柱设计的桥塔经历弹性阶段、裂缝开展阶段、塔柱保护层混凝土剥落及塔柱混凝土压碎4个阶段,且桥塔破坏时塔顶残余位移较小;与强柱弱梁设计相比,强梁弱柱设计的桥塔可以更好地控制塑性发展位置,并充分发挥桥塔塔柱的非线性耗能能力,减小桥塔下部基础的抗震需求。  相似文献   

12.
鄂东长江公路大桥桥塔设计   总被引:6,自引:2,他引:4  
鄂东长江公路大桥主桥为主跨926 m的半漂浮体系双塔混合梁斜拉桥,桥塔采用"凤翎"式钢筋混凝土结构,由下塔柱、下横梁、中塔柱、中上塔柱连接部及上塔柱组成,采用C50混凝土.采用MIDAS 2006桥梁综合程序和桥梁博士3.0程序,按三维空间框架结构分裸塔阶段、最大单悬臂阶段和使用阶段对桥塔进行结构计算,并对下塔柱(含下横梁)和中上塔柱连接段进行局部仿真分析,结果表明桥塔的应力、强度和刚度均满足规范要求.桥塔施工分为下塔柱、下横梁、中塔柱、上塔柱和塔顶结构等施工阶段,介绍桥塔施工要点.  相似文献   

13.
斜拉桥传统施工一般采用先主塔、后主梁的施工方法。近年来兴起的一种“塔梁同步”施工方法,能节省大量的工期,有着很大的应用前景。然而,对于造型美观的钻石形桥塔,受制于其结构特点,“塔梁同步”的应用受到限制,且国内关于该类桥塔的“塔梁同步”施工实际案例和研究也很少。本研究以汕头某大桥一座空间钻石形桥塔斜拉桥为工程背景,对该主塔类型的“塔梁同步”施工的可行性和施工控制技术进行分析,最后确定了同步5对索的“塔梁同步”施工方案,在实际施工过程中,当3号索初张完成时,主塔塔顶合龙,最终实现“塔梁同步3对索”。同时,在“塔梁同步”过程中,根据监控方案对主塔关键部位进行了应力和变形监测,监测结果表明关键控制指标符合监控预期,证明了“塔梁同步”施工方法在钻石形主塔的斜拉桥中也具有可行性。  相似文献   

14.
安徽省六安寿春西路桥为大型景观桥梁,主桥为(108+70)m V形斜塔非对称斜拉桥,桥面宽47.0m,主梁采用大悬臂宽幅展翅钢-混混合梁,钢-混结合段采用部分填充混凝土后承压板式构造。桥塔为矩形变截面混凝土塔,为实现V形斜塔景观效果,塔柱桥面以上无横梁。为弥补无横梁倾斜塔柱结构受力、变形及稳定性的不足,采用了塔柱增设预应力筋、塔顶及塔梁固结段采用钢纤维混凝土、副塔斜拉索两次锚固、双索面竖琴形布置、整体挤压式锚固体系等措施。桥梁下部结构采用承台接群桩基础。主梁及桥塔均采用钢管支架法施工。采用MIDAS进行整体计算并采用ANSYS进行局部计算,结果表明结构设计满足规范要求。  相似文献   

15.
文山马鹿塘特大桥主桥为(63+137+480+137+63) m双塔双索面斜拉桥,大桥单侧与连拱隧道相接。主梁采用双工字形钢-混组合梁,桥面全宽32.2 m;桥塔采用钻石形混凝土塔,两岸桥塔塔高分别为247 m和254 m;斜拉索按空间双索面对称布置。整幅式桥梁桥隧顺接采用双线分离设计,避免了桥梁整体加宽或设置整体式大跨隧道,同时缩短了连拱隧道长度。为降低汽车、温度和风等荷载作用下的结构响应,在塔梁间设置了弹性刚度为12 MN/m的纵向弹性约束体系,静、动力作用下梁端位移分别下降37.4%和35.9%、桥塔塔柱底纵向弯矩分别降低19%和20%,静力作用下钢主梁应力减小约30 MPa、桥面板抗裂应力储备提高1.13 MPa。辅助墩墩顶主梁采用10 cm落梁设计,墩顶组合梁桥面板抗裂应力储备提升117.7%,且其它主体结构受力未发生显著变化。组合梁采用双节段循环施工方案,有效缩短了主梁施工工期。  相似文献   

16.
赤水河红军大桥为主跨1200 m的单跨悬索桥,桥塔为门式框架结构,由塔肢和上、下2道横梁组成。为加快施工进度,对塔梁同步和塔梁异步2种施工方案进行综合比选,确定该桥采用塔梁异步施工方案。通过方案优化,施工中设置5道主动横撑,确保桥塔不出现拉应力;横梁采用空中附壁支架现浇施工,节省钢材,缩短工期;采用有限元软件对该方案进行仿真分析,验证了该方案的合理性。塔梁异步施工时,塔肢施工到一定高度后进行下横梁施工;塔肢封顶后,同步施工大桥上部结构和上横梁;通过横梁与塔肢结合处钢筋全断面Ⅰ级接头控制,增加塔肢混凝土凿毛厚度,采用定位钢筋串联法进行横梁锚杯相对位置及线形控制,预应力管道口采用定位钢筋进行位置固定,保证了桥塔施工质量。  相似文献   

17.
为了减小斜拉桥曲线形钻石桥塔在施工阶段和运营阶段的拉应力,防止混凝土桥塔出现开裂病害,以主跨480m的宜宾盐坪坝长江大桥为例,开展桥塔抗裂设计技术研究。采用MIDAS Civil程序建立全桥空间有限元模型,计算桥塔在施工阶段和成桥运营状态下的内力,研究桥塔竖向预应力、斜拉索横向偏心布置、塔柱临时横撑及对拉、环向预应力等措施对桥塔应力的改善作用,以及桥塔混凝土掺加钢纤维对材料强度的提升效果。结果表明:曲线形钻石桥塔受力复杂,在塔柱受拉区设竖向预应力是有效的抗裂措施;斜拉索适当向曲线外侧横向偏心布置可减小塔柱横向弯矩;临时横撑及对拉既可减小施工期塔柱拉应力,又可改善塔柱成桥状态的应力;环向预应力为塔柱水平方向提供一定压应力储备;桥塔混凝土中掺加少量钢纤维对强度提升作用不大,可减小桥塔表面非受力裂缝。  相似文献   

18.
正2017年12月28日,沪通长江大桥28号墩中塔柱成功合龙(见图1)。中塔柱合龙段施工共浇筑1 858m~3混凝土,桥塔施工高度达到210m,巨人型中塔柱在长江中的高空"聚首",提前实现了年度重大节点目标。沪通长江大桥主跨1 092m,28号墩桥塔采用钢筋混凝土结构,桥面以上为倒Y形,桥面以下塔柱内收为钻石形结构。桥塔高325m,采用液压爬  相似文献   

19.
重庆机场专用快速路工程南段寸滩长江大桥为主跨880m的钢箱梁单跨双塔悬索桥,桥塔塔柱为门式框架结构,两塔柱竖直布置,上、中、下横梁均为预应力混凝土单箱单室结构,跨度大,荷载重,距地面高。桥塔采用塔梁异步施工,横梁采用无落地式钢构托架法施工,利用1套横梁钢构托架,按照下、上、中横梁的施工顺序,对3道横梁进行施工。在桥塔横梁施工过程中重点对横梁施工托架提升及下放、横梁施工托架预压、槽口区应力、塔梁结合面应力、桥塔塔柱线形和横梁应力等进行控制,采取了托架提升下放时设置钢绞线锚固、千斤顶张拉钢绞线实现托架预压、钢靴开槽处布置加筋网、塔梁结合面设置键槽、横梁距塔柱1m范围内采用微膨胀混凝土等措施。通过MIDAS Civil软件建模分析横梁施工过程,结果表明横梁结构安全,线形满足设计及规范要求。  相似文献   

20.
大榭大桥是浙江省宁波市建设中的一座跨海大桥,主塔采用"帆"形钢砼结合塔,高138.291m。该类型主塔施工难度大,可借鉴经验少,中下塔柱及横梁采用C50海工混凝土,抗裂要求高。介绍了工程施工特点和总体施工方案,重点介绍了塔柱及横梁施工、主塔模板设计、劲性骨架安装、海工混凝土防裂等,为同类工程施工提供经验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号