首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
针对单一广义预测控制器在控制过程中只修改模型参数而不修改控制器参数,导致列车在启动和制动阶段控制效果较差这一问题,采用双自适应广义预测控制方法,设计高速列车双自适应广义预测控制器实现对高速列车运行过程的自动控制。该控制器采用具有可变遗忘因子的递推最小二乘法实时辨识列车运行过程模型的参数,根据辨识得到的模型参数自适应建模且修正控制器的调优参数,进而计算出高速列车需要施加的牵引/制动力,并设计确保控制器稳定的监督机制,实现高速列车对给定速度的高精度跟踪。仿真结果表明:双自适应广义预测控制器对给定速度和位移均有高精度的跟踪能力,在遇到未知干扰时仍能确保列车安全、稳定地运行,其控制效果明显优于单一自适应控制器。  相似文献   

2.
随着列车运行速度的提高,列车与接触网、轨道、空气的动力作用加剧,给高速列车的建模与控制提出更高的要求。本文提出数据驱动的高速列车子空间预测控制方法:构建基于状态框架的高速列车多变量动力学系统;由输入输出数据设计高速列车的子空间预报模型;详细分析高速列车子空间预测控制器的设计方法,并给出相应的预测控制算法。高速列车的数值仿真实验结果证明所提出控制方法的有效性。  相似文献   

3.
列车运行控制系统是一个多输入、多目标的复杂系统,为了真实模拟列车的运行过程,研究提出以常规PID控制为基础,运用人工神经网络和计算机自学习机制组成具有自适应功能的列车运行模拟系统的智能控制模型,高速列车运行控制模式和列车运行模拟系统的功能。  相似文献   

4.
在目标-距离速度控制模式普遍应用于我国高速铁路列车控制的背景下,本文针对高速列车运行性能的要求,将模糊神经网络预测控制运用到高速铁路ATP中,对列车速度进行控制。控制系统以闭塞区间为单位,建立高速列车速度模糊神经网络预测控制模型。在闭塞区间内,利用车-地通信将控制所需信息发送至列控中心;根据所得信息,通过预测控制算法得到从当前位置到闭塞分区出口的列车速度自动防护曲线并确定列车运行方式和控制策略;在每1个通信周期内,利用滚动优化和误差校正进行速度优化。仿真结果表明,与传统的控制方法相比,基于模糊神经网络预测控制的高速列车ATP具有更高的安全性。  相似文献   

5.
针对普通广义预测控制器在列车控制过程中不能修改控制器参数,以至列车运行中遇到未知干扰时影响控制精度和稳定性。本文采用基于控制器匹配的广义预测控制调优方法,以达到经过调优的GPC与H!输出反馈控制器(最优控制器)具有相同的控制效果,并获取GPC调优参数,实现高速列车速度跟踪运行过程的自动控制。该控制器通过最优控制器控制律的函数获得GPC增益,使GPC与最优控制器匹配;在获得GPC增益的基础上,将目标函数转化为凸优化问题,求得GPC的调优参数;GPC自适应建模参数与H!控制器模型匹配,避免模型参数失配,保证控制器模型的稳定性。仿真实验结果表明GPC和H!控制器能够较好地匹配,且基于控制器匹配的高速列车广义预测控制系统具有较好的速度和位移跟踪性能。  相似文献   

6.
列车速度控制是轨道交通发展领域的重要基础问题。面向真实列车速度控制应用场景的列车动力学模型及其控制器设计更具挑战性。一方面,传统基于反馈的无模型控制策略存在收敛速度慢、参数要求高、环境变化敏感等问题,目前难以从优化角度设计控制器且应对复杂系统的约束。另一方面,传统的列车单质点动力学模型很难解决高速列车运行过程中的非线性特性。针对上述瓶颈,首先对列车各节车厢进行受力分析,且考虑车厢间的安全距离,将相对位置和相对速度作为可变状态构建列车多质点模型。然后采用模型预测控制策略,综合考虑列车速度控制的非线性成本函数,处理列车运行过程中的复杂约束,预测控制系统的未来动态行为。然后,针对列车预测控制中的复杂动态约束非线性优化问题,设计对数障碍函数处理不等式约束,进而从拟牛顿法角度设计一种具有稳定收敛性的基于BFGS方法的列车速度预测控制算法,完成列车速度的精准跟踪控制。最后,以国内某线站间列车运行数据为例,与其他先进控制方法进行对比实验,以验证所提出的BFGS列车速度预测控制算法的优越性能。实验结果表明,本文所设计的基于BFGS方法的列车速度预测控制算法能够有效地减小列车速度跟踪误差和位移误差,提升...  相似文献   

7.
列车运行过程是一个典型的非线性过程,并且随着列车速度的增加,非线性特性越来越强,这就给自动驾驶系统的设计提出更高的要求。本文针对高速列车自动驾驶系统设计多模型广义预测控制器。首先针对高速列车的非线性特性,利用聚类有效性评价指标确定最优的多模型个数,然后采用减法聚类方法建立多模型集合。接着针对每个聚类集合,利用递推最小二乘方法建立相应的线性模型。最后针对模型参数不确定性和未建模部分,设计多模型广义预测控制器进行控制。仿真结果证明了该方法的有效性。  相似文献   

8.
面向城轨客流时变需求,在给定乘客服务水平的限制下,耦合出行需求与列车始发时间,优化城轨线路列车运行计划,使得列车对数和列车车底数最小化。以具有单一尽头车场的列车运行计划优化问题为研究背景,将该问题分解为列车时刻表优化子问题和列车周转方案优化子问题。针对列车时刻表优化子问题,提出基于时刻表的客流分配方法,构建相应的列车时刻表优化模型,并设计列车时刻表双向关联序列化优化算法;针对列车周转方案优化子问题,建立相应的列车周转方案优化指派模型,同时设计求解该模型的匈牙利算法。算例分析表明:本优化产生的列车运行计划,在满足乘客服务水平的基础上,最大限度地降低了列车运行成本,依次使得列车对数、列车车底数最少,证明模型和算法的有效性。  相似文献   

9.
以京沪高速为背景,对中高速列车共线运行仿真问题进行探讨。分别建立单列车运行模型和多列车共线运行模型。单列车运行模型全面考虑了列车物理特性、线路条件、列车受力情况以及运行控制过程。多列车模型在上述基础上,附加了共线运行不同速度列车间的相互影响,对列车间距控制和避让进行了重点考虑,研究多列车共线运行时的列车间距控制策略和避让策略。用VisualC 6 0进行了中高速列车共线运行的软件实现。仿真计算结果表明,该软件能较好模拟多列车共线运行情况,可作为列车调度系统中负责列车运行模拟的子系统。  相似文献   

10.
高速列车节能运行控制对高速列车节能降耗至关重要。基于现代最优控制理论,考虑列车再生制动能量反馈,建立高速列车在定时约束条件下最小能耗计算模型,利用极小值公式推导得到最佳控制原则为最大牵引、匀速、惰行及最大制动这4种运行方式组合。在此基础上,依据高速列车牵引特性和阻力特性曲线,提出一种列车节能运行控制方法,基于此方法求解得到列车运行能量消耗最低所对应的最大速度值,从而计算得出整个运行过程中列车运行能量消耗最小时最大牵引、匀速、惰行及最大制动的转换点。为验证所提方法的有效性,以京津城际CRH3型动车组为例,采用本文所提出的节能运行控制方法,列车运行能耗比试验测试值降低了约14%。研究结果为高速列车节能运行控制提供了依据。  相似文献   

11.
针对高速列车自动驾驶系统精确进站停车问题,基于列车动力学模型和列车制动系统模型,设计1种自适应模糊滑模控制器,通过模糊切换以补偿列车运行过程中受到的基本阻力、线路附加阻力以及外部未知随机扰动等非线性扰动的影响。根据滑模控制理论,利用列车运行过程中的状态偏差,设计基于跟踪误差的等效控制器,以求解列车制动等效控制量;考虑外部扰动,基于优秀司机驾驶经验的模糊推理规则,设计切换控制器,以得到精确控制量。采用本文控制算法对列车制动过程进行仿真验证,并与传统的PID控制和基于指数趋近律的滑模控制进行对比。结果表明:在考虑附加阻力和外部扰动情况下,自适应模糊滑模控制器能够柔化非线性切换控制信号,削弱滑模控制固有的抖振现象,实现对参考轨迹的精确跟踪,并最终实现精确停车;即使在列车制动系统实际控制输出出现偏差时,设计的控制器仍能控制列车精确跟踪参考制动曲线。  相似文献   

12.
为了克服数学模型不能反映列车运行的真实情况,利用Adams/rail建立基于磁流变阻尼器的高速动车组8车模型,提出了基于一般模糊控制的量化因子、比例因子的参数自适应模糊控制策略。通过Matlab/Simulink环境中对高速动车组模型与被动控制和简单开关半主动控制、一般模糊控制、参数自适应模糊控制策略进行联合仿真分析。结果表明,一般模糊控制和参数自适应模糊控制比简单开关半主动控制控制品质好,参数自适应模糊控制控制效果最佳;半主动控制策略在降低车体横向加速度,脱轨系数和轮重减载率方面,明显优于被动控制。在提高列车运行平稳性,乘客乘坐舒适度和运行安全性方面显出优势。  相似文献   

13.
虚拟编组可有效提升运输能力,是轨道交通领域的研究前沿,其行车方式的变革给列车运行控制带来新的问题。为满足虚拟编组行车紧密追踪及协同作业的安全防护需求,探讨一种基于可达集的虚拟编组列车运行安全防护方法。首先,构造列车运行控制混成自动机模型,更加精确地描述编组列车控制行为;然后,提出一种通过对混成模型过近似可达集求解来确保列车运行安全的防护方法,深入剖析虚拟编组列车运动行为,给出一种面向多面体精化的自适应步长可达集求解算法,能够实时预测前行列车动态轨迹,进而达到最大限度缩短列车追踪间隔的效果;最后,利用实际线路数据进行仿真实验。实验结果表明,该防护方法与传统防护方法相比,可进一步缩短列车追踪间隔,更能满足虚拟编组行车安全防护需求。  相似文献   

14.
《机车电传动》2021,(4):119-125
针对高速列车在多变复杂环境运行时,传统控制器出现的动力学模型不匹配和司机操作存在安全隐患的问题,提出一种基于无模型自适应控制(Model-Free Adaptive Control, MFAC)的高速列车自动驾驶控制器设计方案。首先,构建全格式动态数据列车模型,将列车的非线性特性转移到伪梯度中;其次,根据全格式动态数据列车模型设计无模型自适应控制律和列车控车原理,通过列车运行数据估计伪梯度,构建ATO控制器;最后,使用"兰州西—西宁"的动车组运行数据进行仿真,得到MFAC控制器作用下的速度追踪误差为0.254km/h,列车加速度冲击率区间主要分布于[0,0.1)中,约占总步长的83.8%,并与模糊自适应PID(ProportionIntegral-Derivative)在速度追踪、位移追踪和舒适度方面做了对比,结果表明该控制器的性能更优。  相似文献   

15.
为了压缩高速铁路列车运行的总晚点时间、编制高质量的列车运行调整计划,建立高速铁路列车运行调整模型,运用矩阵描述高速列车运行调整中的相关概念,以列车到发线数量、列车追踪时间间隔、列车停站时分等作为高速列车运行调整的约束,以列车在各站的到达的总晚点时间最少为优化目标,构建高速铁路列车运行调整模型。在分析基本差分算法差分策略的基础上,提出基于三角差分策略的高速铁路运行调整差分算法,给出详细的计算步骤。以京广高速铁路实际列车运行数据进行计算,验证了模型的有效性和算法的高效性、精确性。本文提出的基于新的改进的差分策略的高速铁路列车运行调整方法是合理可行的。  相似文献   

16.
停车精度是衡量列车自动驾驶控制性能的重要指标。针对城际轨道列车精确停车的需求,分析列车自动停车过程、列车动力学模型以及制动模型,在此基础上提出采用自适应滑模控制器来提高停车精度和列车运行舒适性;应用滑模控制原理设计列车停车控制算法,并对滑模控制中的趋近律增益进行自适应调节,以提高系统响应速度及改善稳态精度。仿真结果表明,基于自适应滑模控制的停车算法表现出良好的鲁棒性和自适应性,该控制器使列车能够精确地跟踪停车目标曲线,并改善列车的停车精度和运行舒适性。  相似文献   

17.
列车控制策略包括输入控制序列和每一控制序列作用距离两方面,本文建立列车运行过程多目标优化模型,以二进制和实数域的混合微粒群优化方法对该问题进行了研究,二进制微粒群算法优化列车输入控制序列,实数域微粒群算法对列车运行距离进行优化,以此得到列车最佳控制策略;针对实际的问题,提出了微粒群算法中pBest更新和gBest选择策略;并与传统的单个目标的列车运行过程优化模型进行了对比研究,仿真研究结果表明混合微粒群优化算法用于列车运行过程优化控制,可以获得满意的效果。  相似文献   

18.
为有效降低列车运行能耗,针对高速列车行进过程中的能耗优化问题,讨论了列车运行阻力的计算及列车停车点的设置,以此建立以列车能耗最小为优化目标的列车运行优化模型,提出3代逼近搜索的引导机制,改进了传统遗传算法中的算子,同时引入逆转算子提高算法求解能力。以CRH380B型高速列车和合福高铁(合肥—福州)数据为基础进行仿真,列车运行能耗降低了10.7%。仿真结果表明,提出的改进遗传优化算法在高速列车行进过程中,满足列车运行准时性和安全性,且能够有效降低运行能耗。  相似文献   

19.
基于列车运行实绩的列车晚点恢复模型是铁路晚点管理的重要内容,是运行图优化和行车指挥的理论基础和依据。为了研究高速列车初始晚点恢复的机理,进行初始晚点恢复预测,本文以武广高速铁路列车运行实绩数据为研究基础,将列车在初始晚点站的晚点时间(PD)、列车晚点后经停各站的总停站缓冲时间(TD)、列车晚点后经停各区间的总区间缓冲时间(RB),以及标识列车是否晚点通过株洲西—长沙南区间的0-1变量(ZC)作为自变量,运用R语言编程建立了以晚点恢复时间(RT)为因变量的高速列车初始晚点恢复随机森林回归模型。对275个测试集数据的预测结果表明:模型允许误差在3min情况下,模型的预测精度能达到90%以上。随机森林模型与多元线性回归模型、支持向量机模型的对比表明,随机森林模型具有最优的预测精度。  相似文献   

20.
针对高速列车的主动黏着防滑控制问题,提出基于障碍Lyapunov函数的蠕滑速度动态面跟踪控制算法,可以实现对蠕滑速度的上界约束,同时保障黏着控制系统的稳定性。首先建立考虑牵引与制动转矩产生过程的高速列车动力学模型,并将黏着控制问题描述为含输出约束的非线性系统的跟踪控制问题;然后引入障碍Lyapunov函数处理输出约束问题,设计了自适应动态面控制律,未知参数由自适应律估计得到,未知时变的黏着力和运行阻力由两个力观测器来估算;最后通过Lyapunov方法证明了蠕滑速度跟踪误差半全局一致最终有界,蠕滑速度始终保持在稳定区域内。仿真结果证明了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号