首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
运用复变函数理论研究了理想液体平面势流的多圆柱绕流,导出了多圆柱绕流的解析解,并对其特殊解进行分析,得出当L/a>3时多圆柱间相互干扰消失;为防止围堰发生过大冲刷,应在距围堰0.75 a范围内防护;防止发生的围堰绕流对行船产生影响,避免轮船对围堰的撞击影响施工进度和质量,应在上游距桥址>0.5L处设置防撞栏;避免绕流流线变化过大,桥轴线方向与水流流速方向夹角一般应控制在α≤5.°  相似文献   

2.
通过有限深度均匀流水槽试验研究了不同的圆柱桩群与方柱桩群对均匀水流绕流后方流态区段影响程度及范围,对多组试验研究数据对比分析研究揭示:桩群绕流对均匀水流的影响规律、性质与程度;桩群后方流场流态影响区段范围的影响规律.发现同排列形式的方柱桩群对水流绕流的影响甚于圆柱桩群;垂直于水流方向排列桩柱密度对桩群绕流的影响甚于顺水流方向桩柱排列的密度;雷诺数对桩群绕流影响很大;水利工程实际中采用小尺寸桩柱优于大尺寸桩柱.  相似文献   

3.
通过水槽试验,研究了不同圆柱桩群对均匀水流绕流流态的影响程度,对比分析多组试验研究数据发现了:圆柱桩群对均匀水流的影响规律,不同圆柱桩群对同样水流影响性质与程度的差别,不同圆柱桩群对水流流态影响范围的规律,圆柱桩群的阻流率、排架密度和桩群长度对水流流态的影响规律,不同流速水流对圆柱桩群绕流流态影响规律.得出结论:桩群阻...  相似文献   

4.
为了探讨尾部隔板对圆柱绕流场的影响,采用有限体积法、非结构化网格和层流模型求解二维不可压缩N-S方程.在雷诺数为200的条件下,对背流面沿流动方向的对称线上,带薄板的圆柱绕流场进行了数值模拟,得到了流场速度云图、斯特劳哈尔数及平均阻力系数随隔板长度的变化情况.研究结果表明:在圆柱尾部加入的隔板能有效改善旋涡的脱落情况,削弱尾迹区的能量耗散,同时降低绕流的斯特劳哈尔数.在板长与圆柱直径比为L/D≥7的情况下,加入的隔板使圆柱尾部的旋涡被拉伸为扁平结构并限定在隔板两侧,在扁平对涡的外侧形成类似流线型的流场结构;尾部的隔板也使绕流的阻力系数呈现下降的趋势,当L/D=7时,平均阻力系数下降了约40%.   相似文献   

5.
为探讨三维波浪与结构物的相互作用,以两相流概念、大涡模拟的不可压缩粘性流体运动方程和自由水面追踪分段线性近似的流体体积(VOF)法为基础,建立了三维波浪与结构物相互作用的数学模型;对三维波浪作用下大直径圆柱绕流进行了数值模拟,用两步边界定位法和虚拟边界力法确定波浪与结构物接触面.结果表明:大直径圆柱绕流系数的数值计算结果与理论解吻合,所建立的数学模型能够很好地模拟三维波浪与结构物的相互作用.  相似文献   

6.
对于列车绕流数值模拟而言,其计算区域越大,边界条件对计算结果的影响越小,但过大的计算区域会导致计算工作量和计算时间的增加,因此,计算区域尺寸的选取是列车绕流数值模拟的关键之一。通过建立12种不同尺寸的计算区域模型,结合数值模拟方法,研究其对列车压力分布特征及气动性能的影响。研究结果表明:数值计算仿真得到的气动力系数与风洞试验得到的气动力系数的误差4%;当计算区域上游高度≥8倍特征高度时,头车鼻尖驻点压力系数基本稳定在1.0左右。通过对比不同大小计算区域的计算结果可知,流线型高速列车绕流数值仿真的推荐采用最小计算区域尺寸为:高度方向为12倍特征高度,宽度方向为24倍特征高度,长度方向上游为12倍特征高度,下游方向为24倍特征高度。  相似文献   

7.
针对理想液体与实际液体圆柱桥墩绕流分析 ,进行了圆柱桥墩局部清水平衡冲刷实验研究 ,并获得了一些有价值的结论  相似文献   

8.
圆柱桥墩绕流分析及局部清水平衡冲刷实验研究   总被引:1,自引:0,他引:1  
针对理想液体与实际液体圆柱桥墩绕流分析,进行了圆柱桥墩局部清水平衡冲刷实验研究,并获得了一些有价值的结论。  相似文献   

9.
在离散涡方法中应用随机微分方程理论来求解二维钝体绕流问题,通过对静止圆柱不同雷诺数下的绕流计算,得到冯卡门涡街和回流区对称轴线上径向速度分布以及升力系数和阻力系数,都与已知结论非常一致。  相似文献   

10.
考虑双向流固耦合并利用软件ANSYS CFX模拟了圆柱表面涡脱的产生和变化过程,结合工程实际给出了计算实例,采用有限体积法对流体力学控制方程Navier-Stokes进行离散,用SIMPLE方法求解,分析计算了圆柱表面周向压力系数分布情况及圆柱的阻力系数、升力系数及Strouhal数,得到了流体与结构物相互作用对圆柱绕流特性的影响。结果表明:由于圆柱受到水流的作用,圆柱的升力及尾流特征显示周期性变化,并出现单一频率振动。  相似文献   

11.
为研究跨海桥梁施工过程中围堰周围海床的局部冲刷深度与冲刷坑形态,运用有限差分软件Flow-3D建立了水流作用下哑铃型围堰周围海床冲刷的三维数值模型.对新建模型的精度进行了验证,基于此模型研究了哑铃型围堰周围的流场特征及吃水深度、流速对围堰周围海床局部冲刷深度的影响.研究结果表明:受围堰与钢护筒影响,围堰周围流场特征比较紊乱;随着吃水深度与流速的增加,哑铃型围堰周围海床的冲刷深度逐渐增大,当吃水深度为12.88 m,流速大小为4 m/s时,围堰周围最大冲刷深度接近8 m,然而与流速相比,吃水深度对哑铃型围堰周围海床冲刷深度的影响相对较小,围堰吃水深度由6.88 m增加到15.88 m时,最大冲刷深度增加不超过25%;最大冲刷深度发生在靠近围堰中心线的钢护筒附近;冲刷坑平面形态与围堰形状类似,围堰周围海床冲刷范围受流速影响较大,而受围堰吃水深度影响较小.   相似文献   

12.
为了解跨海大桥桥台施工过程中哑铃型钢吊箱围堰与波浪的相互作用,研究了围堰下放过程中所受的波浪力.基于RANS方程和k-ε湍流方程建立了波浪-围堰相互作用三维数值模型,并采用流体体积法捕捉自由液面.该模型不但考虑了钢护筒对围堰周围波浪场影响,而且考虑了围堰的整个动态下放过程.结果表明:钢护筒的存在以及围堰动态下放过程均会对围堰周围波浪场产生显著影响,考虑钢吊箱围堰动态下放过程时的受力较固定淹没深度处围堰的受力增大10%;随着波浪高度和波浪周期增大,钢吊箱围堰在下放过程中所受最大水平力呈现增大趋势.   相似文献   

13.
双壁钢围堰是现代桥梁深水基础施工常用的一种挡水结构,其设计与施工应结合每个工程的特点及现场施工条件,力求合理和经济。着重介绍厦深线韩江特大桥210#墩双壁钢围堰的设计及施工方法,根据本工程特点及施工条件,钢围堰采用圆形设计方案和钢管桩内定位施工技术,对同类工程具有参考价值。  相似文献   

14.
钢板桩围堰合理的内支撑施工方案对施工安全、工期长短、成本大小均有一定的影响。以阜阳至六安铁路颍河特大桥深水基础超长钢板桩围堰施工实践为例,通过建立钢板桩、内支撑和土层相互作用的三维整体有限元模型,根据封底混凝土施工时机的不同,选择4种施工方案,对超长钢板桩围堰内支撑施工方案进行了探讨。结果表明:封底混凝土施工越早,对围堰结构的整体安全越有利;实际采用的施工方案要根据桥址处工程地质条件,结合实际工程情况,经方案比选和分析论证以后确定。  相似文献   

15.
结合某沿海地区市政工程大桥实际,为了方便潮汐深水条件下的桩基承台施工,将双壁钢围堰与沉井技术有机结合,形成双壁钢接混凝土围堰。详细介绍了双壁钢接混凝土围堰的设计、制作和施工工艺,以供设计与施工参考。实践证明,双壁钢接混凝土围堰技术减少了钢材用量和降低了围堰加工难度,能够缩短工期、确保施工安全,具有较高的推广价值。  相似文献   

16.
采用GEOSTUDIO边坡稳定及渗流分析程序,对围堰在设计洪水位时、过水工况及降雨条件下纵向边坡渗流和稳定情况进行了分析.分析结果表明:防渗心墙对围堰和边坡具有良好的防渗作用,它增强了围堰和基础边坡的稳定性.在降雨和过水情况下,堰体内渗流场发生明显改变,应对背水坡结构进行优化或采取适当安全预防措施.  相似文献   

17.
天津海河开启桥水中墩利用钢板桩围堰取代传统的钢吊箱围堰进行高桩承台施工。具体方法为:钢板桩插打合龙后,进行围堰内外侧回填,回填完毕后利用浮吊吊装内支撑至围堰内部,再进行围堰内抽水,在围堰内水位下降过程中及时完成钢板桩与围囹和内支撑的焊接,确保施工安全。在条件允许情况下,在钢板桩围堰内外侧进行回填,将高桩承台转化为低桩承...  相似文献   

18.
拖带船队是京杭运河中的重要船型之一,运河中船桥相撞击事故时有发生.为了探讨拖带船队对运河桥梁桥墩的撞击作用,以便更好地设计运河桥墩的防撞设施,该文利用ANSYS/LS-DYNA软件建立了拖带船队和钢围堰填土防撞墩的有限元计算模型,模拟计算了拖船与防撞墩之间的撞击作用,得到了撞击力和撞击能量时间历程的合理规律,可供运河桥墩的防撞设施设计参考.  相似文献   

19.
为研究高雷诺数为22 000下方柱周围流场形态及气动力特性,基于开源计算流体动力学(computational fluid dynamic,CFD)软件OpenFoam平台,采用基于动态亚格子模型的大涡模拟(large eddy simulation,LES)方法,对均匀来流作用下的方柱绕流进行了三维数值模拟.首先,通过对基于时间积分的平均积分分量的比较,验证了本数值计算的准确性;其次,深入分析了方柱周围及其尾流区的流场结构,给出了流场结构的平均和湍流特征,并在此基础上,研究了其气动力特性;最后,分析了两种长径比下表面压力的展向空间相关性.研究结果表明:雷诺数为22 000下方柱尾流区回转长度为1.37倍方柱宽度,Strouhal数为0.121,脉动升力系数为1.40;展向长度取8倍方柱宽度可更准确地获得周围湍流特性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号