首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies a reliable joint inventory-location problem that optimizes facility locations, customer allocations, and inventory management decisions when facilities are subject to disruption risks (e.g., due to natural or man-made hazards). When a facility fails, its customers may be reassigned to other operational facilities in order to avoid the high penalty costs associated with losing service. We propose an integer programming model that minimizes the sum of facility construction costs, expected inventory holding costs and expected customer costs under normal and failure scenarios. We develop a Lagrangian relaxation solution framework for this problem, including a polynomial-time exact algorithm for the relaxed nonlinear subproblems. Numerical experiment results show that this proposed model is capable of providing a near-optimum solution within a short computation time. Managerial insights on the optimal facility deployment, inventory control strategies, and the corresponding cost constitutions are drawn.  相似文献   

2.
This paper investigates a facility location model that considers the disruptions of facilities and the cost savings from the inventory risk-pooling effect and economies of scale. Facilities may have heterogeneous disruption probabilities. When a facility fails, its customers may be reassigned to other surviving ones to hedge against lost-sales costs. We first develop both an exact and an approximate expression for the nonlinear inventory cost, and then formulate the problem as a nonlinear integer programming model. The objective is to minimize the expected total cost across all possible facility failure scenarios. To solve this problem, we design two methods, an exact approach using special ordered sets of type two (SOS2) and a heuristic based on Lagrangian relaxation. We test the model and algorithms on data sets with up to 150 nodes. Computational results show that the proposed algorithms can solve the problem efficiently in reasonable time. Managerial insights on the optimal facility deployment, customer assignments and inventory control strategies are also drawn.  相似文献   

3.
In the last few years, growing attention has been given to the cost savings potential of the specialized freight car pool concept. Under this concept, a fleet of single-purpose freight cars are pooled at many loading points, and the cars emptied at unloading terminals can be sent back to any loading point in order to reduce empty car miles and time. As part of a continuing effort to improve the car dispatching method for this concept, this paper offers an improvement to the traditional linear programming transportation problem approach, incorporating daily variations of empty car supply and demand characteristics in the model. The proposed method, therefore, allocates cars between supply and demand points with the dispatching date specified, enabling the dispatcher to make daily car disposition decisions. It can incorporate both the travel distance cost and inventory cost of empty cars at terminals in the objective. If the holding of empty vehicles at the terminals for future dispatch is allowed, the problem is structured as a transshipment problem in which the overnight storage is the transshipment point.  相似文献   

4.
Reliability of transit time is reputed to be the most important variable influencing freight transport today, according to shipper surveys. Average transit time also plays a major role. A model is developed that shows how a cost-minimizing shipper will adjust its economic order quantity as reliability and/or time in transit changes. Such changes impact on average inventory costs, ordering costs, expected shortage costs and expected excess costs. The model is developed for both discrete and continuous transit time distributions. Reliability is defined as the variance of transit time. A matrix is prepared for some sample data, which shows the minimum cost attainable with each mean/variance of transit time distribution. Comparing across rows and columns of the matrix enables one to show the value (reduction in total cost) obtainable by improving reliability and/or mean transit time. In addition, value can be obtained by improving reliability while increasing average transit time. It is suggested that the model can be used for shippers in negotiating service improvements with carriers and by carriers in negotiating service improvements with shippers. In the former case, the carrier can determine how much they are willing to pay for the improvement, whereas in the latter case, the carriers can determine how much they are able to charge for the improvement.  相似文献   

5.
In this study, we allow using alternative transportation modes and different types of vehicles in the hub networks to be designed. The aim of the problem is to determine the locations and capacities of hubs, which transportation modes to serve at hubs, allocation of non-hub nodes to hubs, and the number of vehicles of each type to operate on the hub network to route the demand between origin-destination pairs with minimum total cost. Total cost includes fixed costs of establishing hubs with different capacities, purchasing and operational costs of vehicles, transportation costs, and material handling costs. A mixed-integer programming model is developed and a variable neighborhood search algorithm is proposed for the solution of this problem. The heuristic algorithm is tested on instances from the Turkish network and CAB data set. Extensive computational analyzes are conducted in order to observe the effects of changes in various problem parameters on the resulting hub networks.  相似文献   

6.
The purpose of this paper is to determine optimal shipping strategies (i.e. routes and shipment sizes) on freight networks by analyzing trade-offs between transportation, inventory, and production set-up costs. Networks involving direct shipping, shipping via a consolidation terminal, and a combination of terminal and direct shipping are considered. This paper makes three main contributions. First, an understanding is provided of the interface between transportation and production set-up costs, and of how these costs both affect inventory. Second, conditions are identified that indicate when networks involving direct shipments between many origins and destinations can be analyzed on a link-by-link basis. Finally, a simple optimization method is developed that simultaneously determines optimal routes and shipment sizes for networks with a consolidation terminal and concave cost functions. This method decomposes the network into separate sub-networks, and determines the optimum analytically without the need for mathematical programming techniques.  相似文献   

7.
In this paper, a vehicle sharing system with multi-transportation modes and allowable shortage is presented. This model aims to minimize the system's total cost by using optimum locations and number of stations, routes, transportation modes, station capacities for different modes and time between stations balancing. Because of the model's complexity, currently available proprietary software is not able to solve the model in a reasonable computational time, so a hybrid algorithm based on a genetic algorithm (GA) and particle swarm optimization is presented. The results confirm its efficiency compared with the classic GA and exact solution methods. Moreover, a sensitivity analysis shows the applicability of the proposed algorithm.  相似文献   

8.
This paper explains the theory in support of total cost analysis (TCA) to compare transportation system alternatives. The full costs of each alternative are first aggregated, including travel time costs and monetizable environmental and social costs. Many costs which are considered on the benefits side of the equation in benefit-cost analysis (BCA) as "cost savings" are brought over to the costs side. Total cost differences among alternatives are then traded off against their estimated non-monetized benefits or impacts, just as a consumer trades off product quality against cost before deciding which product he or she will buy. One advantage of TCA over traditional BCA is that the concept of "total cost" is more easily understood by the public and by political decision-makers than BCA concepts such as "net present worth", "benefit-cost ratio" and "internal rate of return". A second advantage is that there is no suggestion that all "benefits" have been considered; decision-makers are free to use their own value judgements to trade off total cost against non-monetizable social, environmental and economic impacts, just as they trade off quality and convenience against cost when purchasing goods and services in their roles as consumers. The TCA approach is demonstrated in this paper through a case study of two systemwide alternatives for the Baltimore, MD urban area.  相似文献   

9.
《运输规划与技术》2012,35(8):777-824
ABSTRACT

In this paper, a fuzzy-stochastic optimization model is developed for an intermodal fleet management system of a large international transportation company. The proposed model integrates various strategic, tactical and operational level decisions simultaneously. Since real-life fleet planning problems may involve different types of uncertainty jointly such as randomness and fuzziness, a hybrid chance-constrained programming and fuzzy interactive resolution-based approach is employed. Therefore, stochastic import/export freight demand and fuzzy transit times, truck/trailer availabilities, the transport capacity of Ro-Ro vessels, bounds on block train services, etc. can also be taken into account concurrently. In addition to minimize overall transportation costs, optimization of total transit times and CO2 emission values are also incorporated in order to provide sustainable fleet plans by maximizing customer satisfaction and environmental considerations. Computational results show that effective and efficient fleet plans can be produced by making use of the proposed optimization model.  相似文献   

10.
Understanding the cause of cost overruns in transportation infrastructure projects has been a topic that has received considerable attention from academics and the popular press. Despite studies providing the essential building blocks and frameworks for cost overrun mitigation and containment, the problem still remains a pervasive issue for Governments worldwide. The interdependency that exists between ‘causes’ that lead to cost overruns materialising have largely been ignored when considering the likelihood and impact of their occurrence. The vast majority of the cost overrun literature has tended to adopt a deterministic approach in examining the occurrence of the phenomenon; in this paper a shift towards the adoption of pluralistic probabilistic approach to cost overrun causation is proposed. The establishment of probabilistic theory incorporates the ability to consider the interdependencies of causes so to provide Governments with a holistic understanding of the uncertainties and risks that may derail the delivery and increase the cost of transportation infrastructure projects. This will further assist in the design of effective mitigation and containment strategies that will ensure future transportation infrastructure projects meet their expected costs as well as the need of taxpayers.  相似文献   

11.
章娅琳  贺政纲  廖伟 《综合运输》2021,(2):99-104,115
高铁货运逐渐兴起,本文对货运动车组开行方案优化进行了研究。针对高铁运输安全、快捷、运输成本较低等特性,提出以货运动车组及客货混编动车组为主,客运动车组捎带运输为补充的开行模式,结合运输需求、线路通过能力等限条件,以运输成本最小和货主满意度最大为目标,建立多目标综合优化模型,运用线性加权组合法,以lingo软件为依托进行求解。通过算例给出具体开行方案,并对同一运输区间各种运输方式的单位成本及用时进行对比分析。结果表明,相对于传统运输方式,高铁货运综合运输成本较低,用时更短,能够兼顾运输企业与货主的双重要求;所建模型优化效果明显,可为未来货运动车组的开行提供参考。  相似文献   

12.
In the aftermath of super storm Sandy, a large region from North Carolina to Maine endured food shortages, power outages, and long lines at gas stations forced to ration fuel due to low supply and high demand. These issues were largely the result of the affected transportation network’s inability to effectively cope with random and highly dynamic changes, and a lack of available resources and suppliers who were capable of enacting adequate emergency response measures. These problems experienced during super storm Sandy further underscored the need for a robust emergency inventory management system, where planning policies can be integrated with real-time on-line inventory management strategies to keep track of fluctuations of vital commodities such as food, water, medicine, fuel and power supplies. Motivated by this important problem, this paper investigates a comprehensive feedback-based emergency management framework for disasters such as super storm Sandy that provides integration with an emerging intelligent transportation systems technology, namely Radio Frequency Identification Devices (RFID). Within this framework, the offline-planning problem is solved by the stochastic humanitarian inventory management approach; and the online modeling strategy includes the application of a continuous time model predictive control technique. After introducing the mathematical background, the proposed framework is discussed using case studies built based on super storm Sandy in order to understand the efficiency and practicality of this RFID-based methodology. Results suggest that the methodology can properly account for and react to the rapidly changing needs for vital supplies that occur during the emergency relief operations. Based on this approach, planners and decision makers can be aware of the time delay that can happen due to disaster-related disruptions and thus maintain a safe level of buffer for vital supplies.  相似文献   

13.
Bus rapid transit system is designed to provide high‐quality and cost‐efficient passenger transportation services. In order to achieve this design objective, effective scheduling strategies are required. This research aims at improving the operation efficiency and service quality of a BRT system through integrated optimization of its service headways and stop‐skipping strategy. Based on cost analysis for both passengers and operation agencies, an optimization model is established. A genetic algorithms based algorithm and an application‐oriented solution method are developed. Beijing BRT Line 2 has been chosen as a case study, and the effectiveness of the optimal headways with stop‐skipping services under different demand levels has been analyzed. The results has shown that, at a certain demand level, the proposed operating strategy can be most advantageous for passengers with an accepted increase of operating costs, under which the optimum headway is between 3.5 and 5.5 min for stop‐skipping services during the morning peak hour depending on the demand with the provision of stop‐skipping services. The effectiveness of the optimal headways with stop‐skipping services is compared with those of existing headways and optimal headways without stop‐skipping services. The results show that operating strategies under the optimal headways with stop‐skipping services outperforms the other two operating strategies with respect to total costs and in‐vehicle time for passengers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
An analytical model that determines the optimal location and length of rail line along a crosstown transportation corridor with the objective of minimizing the total transportation cost is presented. A general, many-to-many passenger demand pattern is considered. The objective function, which includes the rail and bus riding costs, rail and bus operating costs, rail fleet costs and rail line costs, is minimized by using the classical optimization method with the aid of a computer program developed for the model. The model is applied to the Northwest-South transportation corridor in Calgary, Alberta, and the sensitivity of the optimal rail line location and length to the unit cost and demand parameters at their reasonable ranges is tested. It is found that although the total passenger demand, unit rail line cost, and unit bus operating cost have greater influence than the unit bus and rail riding costs, and unit rail fleet and operating costs, the optimal line length is generally insensitive to all these parameters. It is also found that the length of the existing LRT line in the corridor is comparable to the optimal line length obtained from the model, but the existing line should be extended further south in order to meet the heavier demand in that direction optimally.  相似文献   

15.
Techniques to improve freight car fleet use are of considerable interest to the railroad industry. In this paper, we present a fuzzy inventory control approach applied to the sizing of empty cars on a rail network. We address the problem of deciding the optimal inventory level and the optimal ordering quantity for a rail freight car fleet system in which demand and travel time are uncertain variables represented as triangular fuzzy numbers. Based on the fuzzy economic order quantity (EOQ) formula, a modified fuzzy EOQ model is set up and the optimal policy is developed using the signed distance method to defuzzify the fuzzy total cost. Computational results made for the Serbian rail network case verify the proposed model as well as the efficiency of the approach.  相似文献   

16.
Inefficient road transportation causes unnecessary costs and polluting emissions. This problem is even more severe in refrigerated transportation, in which temperature control is used to guarantee the quality of the products. Organizing logistics cooperatively can help decrease both the environmental and the economic impacts. In Joint Route Planning (JRP) cooperation, suppliers and customers jointly optimize routing decisions so that cost and emissions are minimized. Vendor Managed Inventory (VMI) cooperation extends JRP cooperation by optimizing routing and inventory planning decisions simultaneously. However, in addition to their economic advantages, VMI and JRP may also yield environmental benefits. To test this assertion, we perform a case study on cooperation between a number of supermarket chains in the Netherlands. The data of this case study are analyzed to quantify both the economic and environmental benefits of implementing cooperation via JRP and VMI, using vehicle routing and an inventory routing models. We found that JRP cooperation can substantially reduce cost and emissions compared with uncooperative routing. In addition, VMI cooperation can further reduce cost and emissions, but minimizing cost and minimizing emissions no longer result in the same solution and there is a trade-off to be made.  相似文献   

17.
This paper studies the costs involved in distributing items from a warehouse or depot to randomly scattered customers on a day-to-day basis. Two trade-offs are explored simultaneously. The first one arises because by accumulating large inventories at the depot it is possible to build more efficient distribution tours. This trade-off has already been explored for both distribution of goods (Burns et al., 1983) and passengers (Daganzo et al., 1977; Hendrickson, 1978). Another tradeoff, which involves the length of individual vehicle tours (Clarens and Hurdle, 1975), balances the inventory inside the vehicles against the transportation cost. Banks et al. (1982) have considered both of these tradeoffs simultaneously in the context of passenger transportation, but used a somewhat unrealistic model for vehicle routing. This paper is similar to the latter reference but uses a different routing strategy. It also illustrates how the nature of the objects carried (cheap goods, expensive goods, people, etc.) affects the optimal configuration of the distribution system and the overall distribution costs. Usually there is an optimum partitioning of the service area into districts and an optimum dispatching frequency in each district. The results can vary tremendously, depending on factors such as: the inventory carrying cost per item per unit time, the transportation costs, the demand per unit area and unit time, the average distance from the depot, the average vehicle speed and the time per stop.As an illustration of the ideas, a hypothetical limousine service from an airport is analyzed. The example is used to demonstrate how dramatically the optimal system configuration depends on the nature of the items carried.  相似文献   

18.
Establishment of industry facilities often induces heavy vehicle traffic that exacerbates congestion and pavement deterioration in the neighboring highway network. While planning facility locations and land use developments, it is important to take into account the routing of freight vehicles, the impact on public traffic, as well as the planning of pavement rehabilitation. This paper presents an integrated facility location model that simultaneously considers traffic routing under congestion and pavement rehabilitation under deterioration. The objective is to minimize the total cost due to facility investment, transportation cost including traffic delay, and pavement life-cycle costs. Building upon analytical results on optimal pavement rehabilitation, the problem is formulated into a bi-level mixed-integer non-linear program (MINLP), with facility location, freight shipment routing and pavement rehabilitation decisions in the upper level and traffic equilibrium in the lower level. This problem is then reformulated into an equivalent single-level MINLP based on Karush–Kuhn–Tucker (KKT) conditions and approximation by piece-wise linear functions. Numerical experiments on hypothetical and empirical network examples are conducted to show performance of the proposed algorithm and to draw managerial insights.  相似文献   

19.
Abstract

This paper explores the external costs of domestic container transportation in Taiwan by analysing the origin and destination of current container cargoes. After reviewing an extensive literature survey of methods of external cost, a comparison of external costs between trucking and short sea shipping (SSS) by corridor is made by using a model developed in this paper. Based on the findings that external costs of SSS are considerably lower than truck transport and can be a viable alternative to current domestic container cargo transportation, we discuss the significance and managerial implications of SSS from the perspective of green logistics. In so doing, a top‐down approach is employed for developing government policies, which aim to not only reduce the external costs of domestic container transportation but also promote SSS in Taiwan.  相似文献   

20.
In this paper we introduce new network design problems. A network of potential links is given. Each link can be either constructed or not at a given cost. Also, each constructed link can be constructed either as a one-way or two-way link. The objective is to minimize the total construction and transportation costs. Two different transportation costs are considered: (i) traffic is generated between any pair of nodes and the transportation cost is the total cost for the users and (ii) demand for service is generated at each node and a facility is to be located on a node to satisfy the demand. The transportation cost in this case is the total cost for a round trip from the facility to each node and back. We will consider two options in regard to the links between nodes. They can either be two-way only, or mixed, with both two-way and one-way (in either direction) allowed. When these options are combined with the two objective functions, four basic problems are created. These problems are solved by a descent algorithm, simulated annealing, tabu search, and a genetic algorithm. Extensive computational results are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号