首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
判定跟驰状态的研究   总被引:8,自引:1,他引:7  
在大量实际观测交通流数据的基础上,深入分析跟驰车辆运行特性与车头时距的关系,提出利用相对速度绝对值随车头时距变化的规律定量地判定车辆行驶状态的新方法,即利用坐标变换确定车辆跟驰状态与自由行驶状态转折点。通过大量实测数据对该方法的验证表明,车头时距低于5s的车辆处于跟驰状态,而大于8s的车辆处于自由行驶状态;同时,车速对跟驰状态的界限没有显著影响。  相似文献   

2.
施工区作为高速公路的瓶颈路段和事故多发路段,对其车头时距分布规律和影响因素的研究是确定其通行能力和提高高速公路安全水平的基础工作。以陕西省西安-宝鸡高速公路和西安-临潼高速公路施工区为例,分析了半幅封闭半幅双向通行施工区和单向行车道封闭两种施工区的车头时距分布规律,并确定了施工区车流的运行状态;进一步研究了交通量和施工区不同区段两个因素对车头时距分布规律的影响。结果表明施工区车头时距随着交通量的变化和施工区区段的不同呈现一定的规律性变化。  相似文献   

3.
依据《HCM(2000)》中典型高速公路路段速度-流率-密度曲线,定义并计算了美国高速公路自由流速度、自由流临界流率、自由流临界流率密度、自由流临界流率车头时距(间距)、临界密度、临界密度流率、临界速度、临界密度车头时距(间距)等交通流参数;详细分析上述交通参数的变化规律及各参数之间的相关关系,得出自由流速度FFS(或者设计速度)级差不宜大于10km/h,高速公路自由流临界流率v0与自由流速度FFS成反比关系,流率大于自由流临界流率时流率影响FFS且FFS越高影响越大,以及流率接近通行能力时行驶速度、跟车距离、流率都将趋于一个相对稳定、恒值而与公路几何线形指标高低关联性不大的结论。  相似文献   

4.
在对典型一级和二级公路车头时距、车速、车型等调查获得基础数据及车型分类的基础上,将车辆按照小型车-小型车、小型车-大型车、大型车-小型车、大型车-大型车4种行驶模式进行组合,研究了不同行驶模式下车头时距的分布特征、车速差与车头时距的关系特征。结果表明,不同车型组合下车头时距的分布具有不同特征。  相似文献   

5.
为明确跨江大桥的跟驰行为特征以及驾驶模式,在重庆菜园坝大桥展开了30位被试的小客车实车驾驶试验,使用华测航姿测量系统和前视碰撞预警系统Mobileye 630采集自然驾驶状态下汽车的连续行驶速度、车头时距和车头间距等数据。通过筛选得到了725条有效跟驰轨迹数据,对比分析发现跨江大桥与城市一般道路的跟驰行为存在一定差异性,明确了菜园坝大桥车头时距和车头间距的分布特征,并且对强跟驰(小于1.6 s)、过渡区间(1.6~2.6 s之间)以及弱跟驰(大于2.6 s)3种跟驰状态和驾驶人性别差异下的跟驰数据进行了分析。结果表明:桥梁段车头时距分布集中在1.6 s处,车头间距分布集中在18 m处;超过1/3的跟驰轨迹处于强跟驰状态,此状态下前车驾驶行为对跟驰车辆具有较强制约性;当车辆处于弱跟驰状态时,前车对于后车的约束性会随车头时距的增大而快速降低;过渡区间的设立更好地揭示了强/弱跟驰状态之间的转变并不是只有一个临界值,而是存在一个转换过程,并且其间车辆跟驰特性的变化与驾驶人本身的操作行为存在较大关联;驾驶人的性别差异对跟驰距离几乎没有影响,但男性驾驶人往往会采取更加冒险的驾驶行为,平均车头时距、车头间距以及相对速度均高于女性驾驶人。  相似文献   

6.
为得到一种反映交通流运行情况,适用于各种交通流状态的车辆换算系数(PCE)计算方法,结合车头时距特性分析结论,基于等效车头时距原理,对车头时距法进行改进.通过分析车头时距数据发现,小型车与大型车跟车状态数量差距较大,路段总流量平均车头时距不能体现路段中与大型车有关车辆的平均车头时距,应分跟车状态统计平均车头时距;同一路段不同交通流状态下,同一跟车状态数量相差较大,应分交通流状态分析路段PC E值.因此,用跟车状态平均车头时距代替路段总流量平均车头时距,对车头时距法进行改进.与经典的容量法对比,所提方法在各交通流状态下计算得出的PC E值与容量法计算得出的PC E值差距最大为6.40%,最小为1.57%,证明所提方法适用于各种交通状态.分析PC E影响因素发现,PC E值与大型车比例呈U型曲线关系;公交专用道路段的PC E值在各个时段均高于未设置公交专用道路段相应时段的PC E值.   相似文献   

7.
车头时距是表征交叉口通行能力的主要参数。为探讨网联自动车混行状态下交叉口的通行能力,通过网联自动车跟驰模型推导通过停止线的安全车头时距,分析混行状态下4种跟驰行为,针对是否考虑前车类型,基于概率模型构建混合交通流背景下交叉口通行能力模型,通过参数标定分析网联自动车速度、车头时距、渗透率及信号控制对交叉口通行能力的影响,其中人工驾驶车辆的相关参数和模拟场景中涉及的数据均为实测所得。结果表明,网联自动车速度增加、车头时距减小、渗透率增加、不考虑前车类型都会提升交叉口的通行能力,混合交通流背景下提升交叉口通行能力的根本原因在于车辆通过停止线的均衡态车头时距减小;交叉口受信号控制时的均衡态车头时距越小,通行能力降低幅度越显著。  相似文献   

8.
高速公路隧道路段小客车运行速度模型研究   总被引:3,自引:2,他引:1  
隧道路段特殊的道路环境是隧道路段事故频发的诱因。为了更好地为隧道的路线设计与速度管理服务,首先分析了高速公路典型隧道路段试验车的行驶速度数据,研究了隧道路段的运行速度变化,得到了车速变化的规律。结果表明中短隧道对车速影响不大,长大隧道路段车速变化较为明显,车辆行驶过程可以分为调整-稳定-恢复3个阶段,并确定其中6个点作为运行速度特征点,即隧道前200 m、隧道进口、隧道进口内300 m、隧道出口前300 m、隧道出口前100 m、隧道出口外100 m。进而通过大量的数据调查,利用统计回归方法,建立并验证了特征点的运行速度模型。  相似文献   

9.
为明确山地城市信号交叉口到达车辆的运行特征及其影响因素,通过无人机采集4个位于山地城市的道路信号交叉口的高空视频图像数据,利用基于DataFromSky云平台的AI视频分析技术,获得车辆运行参数。基于车辆运行时空图,得到了交叉口直行道停止线前车辆停滞延误特征、停止线位置车头时距和车头间距统计特征,分析车头间距、停止线截面处速度及道路平均坡度之间的相关性。结果表明:不同路段同一排队位次和同一路段不同排队位次的车辆运行特征均有所不同,排队位次越靠前的车辆,停车点分布区间越集中,下坡路段整体停车位置分布范围比上坡路段大;无论是上坡、下坡,还是缓坡,排队位次越靠前的车辆停滞延误分布范围越大,而靠后的车辆停滞延误分布范围小,最大值出现在下坡路段;不同路段类型车头时距分布均集中于1.5 s,上坡路段的车头时距离散程度最大,但峰值比下坡路段和缓坡路段小;不同路段类型的车头间距分布均集中于10 m,上坡路段和下坡路段车头间距分布出现左偏现象,而缓坡路段车头间距分布更为集中;车头间距在上坡、下坡和缓坡路段均和车辆经过停止线位置处时的速度存在较强的正相关性;道路平均坡度与相邻2车车头间距存在正相关性。   相似文献   

10.
为了分析驾驶风格对不同跟驰场景下跟驰行为的影响,利用高逼真度驾驶模拟器设计晴天、雾天两种天气状况和自由流、拥挤流、阻塞流三种交通流状态组合的六类典型跟驰场景。以跟驰过程中的最大加速度、最大油门踏板受力、最大油门踏板受力速度作为指标,通过K-means聚类识别方法,对六类典型跟驰场景下不同驾驶风格的驾驶员进行聚类识别,并以跟车间距、车头时距为风险指标评价不同驾驶风格的驾驶员在六类典型跟驰场景下的跟驰风险。结果表明:六类典型跟驰场景下,不同驾驶风格驾驶员的跟驰行为存在明显差异;激进型驾驶风格驾驶员倾向保持更小的跟车间距和车头时距,跟驰过程中的碰撞风险更高;晴天和自由流场景下不同驾驶风格驾驶员跟驰行为差异性更加显著。  相似文献   

11.
基于驾驶行为共性建模的速度-密度关系研究   总被引:1,自引:1,他引:0  
为了能对车流的速度-密度关系进行准确描述及对现实交通中的速度陡降现象进行解释,首先提取出驾驶行为共性:(1)驾驶员利用与渴望车速对应的心理车头间距来判断前方的交通流状况;(2)驾驶行为中加速或减速行为是驾驶员根据前车传递的交通信息和自己对此信息的时间和空间理解来进行的,并且以回波速度向后传递。此后,在对这些驾驶共性进行数学描述的基础上建立一种以车头间距和驾驶员反应时间等为参数的回波速度和速度-密度关系模型,通过分析模型中驾驶员反应时间这个参数在加速和减速时的不同选择对速度陡降现象进行解释。最后,使用MATLAB7.0软件数值模拟计算回波速度和速度-密度关系,计算结果表明:回波速度最大值与相关文献给出的值吻合,速度-密度关系曲线与观测的数据吻合,驾驶员反应时间变化是产生速度陡降现象的根本原因。  相似文献   

12.
为了计算设置间歇式公交专用道的路段通行能力,在介绍间歇式公交专用道系统的基础上,应用移动瓶颈理论对路段通行能力进行了研究,给出了通行能力的计算公式;然后构建了设置间歇式公交专用道前后双车道元胞自动机交通流模型,对比了公式计算与模型模拟的结果。研究结果表明:通行能力随公交车运营车速的降低而下降;只有当发车间隔大于集结流的集结消散时间时,公交车的发车间隔才会影响路段的通行能力,此时通行能力随发车间隔的增大而增加。  相似文献   

13.
从车头间距构成的理论分析入手,考虑了跟驰时间变量和车速随机分布的特性,建立了跟驰时间模型和车头间距随机项模型,进而建立了改进的车头间距模型,在此基础上建立了改进的通行能力模型,以《HCM2000》中的高速公路临界速度数据作为评定标准标定模型的参数,并计算确定理论通行能力值,该值与《HCM2000》中的通行能力值相差很小,证明该模型能够拟和实际的道路交通流情况,同时分析了最大跟驰时间和速度均方差对通行能力的影响,最后采用城市主干道的调查数据对模型进行了标定和验证,验证结果表明,该模型经过标定后可以拟和城市道路的交通流状况,进一步说明了模型的实用性。  相似文献   

14.
为了防止公交车辆在线路重叠运行区间产生公交串车,在站点附近形成交通瓶颈,提出一种采用车速诱导策略来调整公交运行状态的动态调度模型。采用车路协同环境下的公交运营调度方式,结合各线路独自运行时的乘客需求和车辆车头时距规律,在避免重叠区站点公交串车的前提下,实现了各线路车辆最大程度地维持各自独立运行时车头时距的优化目标。提出的车路协同环境下的车速诱导调度策略,在引导各线路公交车辆间隔均匀地进入重叠区间后,根据乘客实时交通需求和道路交通状况,实现对车辆的实时调控。开发了一种启发式算法对车辆进入重叠区间的时刻进行求解,采用基于遗传算法的仿真过程求解了重叠区站点之间车辆的最佳运行速度,实现了重叠区间车辆动态调度过程。以哈尔滨市运行区间重叠的3条公交线路为实际案例进行仿真分析,对3条线路共计47辆公交车在重叠区12个站点之间的运行状况进行了优化调度。结果表明:采用提出的启发式算法进行调度后,车辆可以完全均匀地进入重叠区。通过对比采用动态调度优化前后的车辆运行状态发现,车辆串车现象由优化前的单站最多发生6次下降为0次,最大程度地实现了避免公交串车的目标。此外,车速诱导策略不仅避免了不同线路车辆在重叠区站点的串车现象,而且可以调整各线路上相邻两车之间的车头时距偏差,线路1的车头时距最大偏差从55%下降到了30%,线路2的车头时距最大偏差从25%下降到了13%,线路3的车头时距最大偏差从23%下降到了18%。  相似文献   

15.
公路运行速度特征研究   总被引:1,自引:0,他引:1  
选取自由流车辆作为分析样本,采用统计分析软件,对各观测点的试验数据进行处理分析,获得了自由流条件下的速度样本统计参数及累计频率曲线。分别利用K-S检验和S-W检验对所取得的样本进行正态分布检验。为获取运行速度特征值,在分析运行速度累计分布曲线变化规律的基础上,引入离差的概念,对运行速度取不同百分位值时的离散程度进行了分析,得出了运行速度特征值的定量化标准。结果表明:运行速度样本服从正态分布的假设;用于路线设计的运行速度应取速度累计分布曲线上的85%分位值;所得结论为公路运行速度的合理取值提供了理论支持。  相似文献   

16.
为明确螺旋匝道和螺旋桥处的驾驶行为模式和汽车运行特征,在涪陵长江一桥、乌江二桥、重庆融侨大道和涪陵金凯环形高架4处地点开展螺旋匝道实车试验,用车载仪器采集自然驾驶状态下的汽车连续行驶轨迹、速度以及周围行驶环境等信息。基于自然驾驶数据,研究螺旋匝道范围内的速度变化模式、幅值特性以及影响因素。研究结果表明:单车道螺旋匝道的速度变化模式多样化,双车道螺旋匝道的行驶速度在整体上维持稳定,匝道范围内的连续升坡和降坡并未导致速度出现趋势性衰减和趋势性升高;螺旋匝道并入主线时,驾驶人在合流鼻之前有明显的、共性的减速行为,这与现行设计标准中的设计假定相反;除涪陵长江一桥之外,其余3处都是下行速度低于上行速度;螺旋匝道设计速度越低,实测速度与设计速度之间的偏离越严重,并且速度幅值离散化,因此不建议使用20 km·h-1的匝道设计速度;螺旋匝道运行速度与匝道半径成正相关。  相似文献   

17.
差速器提供了自由的转速差满足车辆的行驶需要,然而却在特殊路况下导致了车轮空转车辆停滞。差速锁介入消除了转速差,解决了这一特殊情况的同时却带来了其他问题。差速器不限制的转速差超出使用要求,差速锁直接砍掉全部转速差。差速器与差速锁,本身就是矛盾对立的二者,汽车总是在二者之间艰难的取舍。其实我们并不需要差速锁,只需差速器保留正常行驶所需要的转速比的即可,我们将之命名为:半开放式差速器。基于机械控制式的、结构简单的、功能可开可关的半开放式差速器已经实现了技术突破并试验成功,也取得了相关发明专利,故在本文中研究讨论。  相似文献   

18.
公路平曲线路段大型车运行速度模型研究   总被引:4,自引:1,他引:4  
从安全设计一致性理念出发,详细分析了驾驶员在高速公路自由流状态下平曲线路段的信息采集处理过程,认为大型车在平曲线路段的曲中点前后两部分运行速度是受不同的线形信息的影响,用大量的实测数据建立了相应的两阶段平曲线路段大型车运行速度统计模型。经过与实测速度对比验证,证明两阶段平曲线运行速度预测模型具有预测精度高、适用范围广的优点。这为利用运行速度制定公路线形设计标准提供了良好的数据支持,同时也为运行速度进行安全一致性审核提供了理论支撑。  相似文献   

19.
车辆通过缓速脊时,因行驶状态发生变化而引起车辆噪声的变化。车辆在接近缓速脊的减速阶段噪声降低,在通过缓速脊后的加速阶段噪声增加,缓速脊对轻型车噪声的影响可用声源辐射能量的线性密度S加以评估。车辆和缓速脊间瞬时距离为x,要确定函数S(x),对于每辆车需要5个声曝级的测量值。本文假定每辆车为无方向点声源,产生的噪声在传播过程中无垂直于表面的反射,并基于此给出轻型车声曝级的测算方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号