首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为研究钢板-混凝土组合梁的受力性能,对2片带肋钢板-混凝土组合梁和1片普通钢筋混凝土梁进行了负弯矩区段的试验研究分析以及极限抗弯承载力计算方法的探索。试验表明,钢板-混凝土组合梁在抗弯承载力、刚度上表现良好。提出的钢板-混凝土组合梁极限抗弯承载力弹性-塑性相结合的计算方法,计算值与试验值较吻和。  相似文献   

2.
圆钢管自密实混凝土纯弯力学性能   总被引:5,自引:2,他引:5  
基于合理的钢材和核心混凝土拉压本构模型,利用截面分层法对钢管混凝土纯弯构件弯矩-曲率进行全过程分析,建立了钢管混凝土实用组合抗弯刚度、极限抗弯承载力等计算式和钢管混凝土组合梁单元弯矩-曲率全曲线实用计算方法,通过3根钢管自密实混凝土和1根钢管普通混凝土受弯构件的试验研究,考察了混凝土强度和含钢率对构件纯弯性能的影响。试验结果表明,受弯构件受压区钢管对混凝土产生约束套箍作用,受拉区钢管处于双向受拉应力状态,提高混凝土强度对提高极限弯矩作用不明显,而增大含钢率对提高极限弯矩作用较明显,并且与分层法相比,组合单元法在保证精度的前提下,减少了截面分层,提高了程序的计算速度。  相似文献   

3.
带管翼缘的钢-混凝土组合梁抗弯性能试验研究   总被引:4,自引:0,他引:4  
为了研究带钢管混凝土上翼缘的钢-混凝土组合梁在静载作用下的抗弯性能,进行了组合梁静力试验,建立了组合梁有限元模型,进行了非线性静力变参数分析。基于钢材的理想弹塑性模型和圆形钢管约束混凝土模型,建立了正截面抗弯承载力理论分析模型。研究结果表明:新型组合梁满足平截面假定,抗弯承载力大,延性好,钢管内填混凝土与管壁无滑移;极限抗弯承载力随含钢率与钢材的屈服强度的提高而增大,管内填混凝土强度的提高对极限承载力影响不大,但可以显著提高其延性,因此,在新型组合梁设计过程中要考虑内填混凝土强度和上翼缘钢管屈服强度之间的匹配关系;极限抗弯承载力试验值与理论计算值的比值为1.07,说明理论分析模型偏于安全。  相似文献   

4.
为改善钢-混组合梁负弯矩区混凝土易开裂缺点,引入工程水泥基复合材料(ECC)和超高性能混凝土(UHPC)代替普通混凝土(NC)形成钢-ECC/UHPC组合梁,展开了1片钢-NC组合梁、1片钢-ECC组合梁和2片钢-UHPC组合梁的负弯矩区静力试验;结合有限元分析方法对比了不同类型混凝土的应变、裂缝扩展与分布特点,分析了混凝土类型和配筋对钢-混组合梁破坏形态、承载能力与变形能力影响规律。研究结果表明:钢-混组合梁在负弯矩作用下整体协同工作性能良好,破坏形态均为弯曲破坏;ECC和UHPC裂缝呈现纤细的特点,ECC尤为明显;与钢-NC组合梁相比,钢-ECC组合梁和钢-UHPC组合梁的开裂荷载分别提高了2.00和2.75倍,抗弯刚度分别提高了17.23%和35.73%,抗弯承载力分别提高了9.00%和6.81%,表明UHPC抗裂能力更强,可以有效改善钢-混组合梁负弯矩区桥面板抗裂性能,ECC与UHPC代替NC可以提高钢-混组合梁的抗弯刚度和承载力;配筋与无筋钢-UHPC组合梁的开裂荷载和前期刚度无显著差异,无筋钢-UHPC组合梁破坏时形成贯通裂缝,其承载力相比配筋钢-UHPC组合梁下降了13....  相似文献   

5.
钢-混凝土双面组合箱梁是由两个H型钢作钢骨架,并与上下两块混凝土板组合形成的箱形截面,可用于连续梁的负弯矩区。推导得到了负弯矩区截面弹性刚度和塑性极限弯矩的计算公式。建立集中力作用下双面组合连续箱梁负弯矩区的Ansys分析模型,得到了组合梁的荷载挠度曲线、截面应力和应变变化曲线以及钢与混凝土交界面的纵向滑移分布。与双主梁组合梁和普通组合箱梁的受力性能做比较,显示了双面组合箱梁承载能力和变形能力的优越性。  相似文献   

6.
对于连续体系的钢-普通混凝土组合梁,处于负弯矩区的混凝土桥面板由于抗拉强度低,极易受拉开裂,导致组合梁的强度与耐久性下降.针对这一问题,提出了采用超高强度、高耐久性、高韧性且体积稳定性良好的活性粉末混凝土(RPC)材料代替普通组合梁中的混凝土桥面板,并根据RPC材料的本构关系及抗拉强度高的特点,确定以临界开裂状态作为这种新型钢,RPC组合梁的正截面破坏模式,推导了极限承载力计算公式,并对组合截面中RPC板与钢梁的高度比、宽度比、RPC板中的配筋率进行了参数影响分析.结果表明:钢-RPC组合梁与同条件的普通组合梁相比,在保证负弯矩区桥面板不开裂的情况下,极限承载力仍有所提高,并且结构的抗裂性、刚度和耐久性都可得到极大改善.  相似文献   

7.
为预测界面焊钉锈蚀后钢-混组合梁抗弯承载力, 考虑了焊钉锈蚀后其抗剪强度与混凝土黏结强度和有效面积降低对焊钉抗剪承载力的劣化影响, 提出焊钉锈蚀后组合梁抗剪连接度和锈蚀焊钉抗剪承载力系数的概念及其计算公式; 基于塑性简化计算假定, 采用焊钉锈蚀后组合梁抗剪连接度对其抗弯承载力进行折减, 建立了焊钉锈蚀后组合梁正负弯矩区抗弯承载力计算模型, 分析了23根组合梁抗弯承载力试验结果, 验证了计算模型的有效性。试验结果表明: 在焊钉锈蚀率低于10%时, 试验梁正负弯矩区抗弯承载力的试验值与提出公式的理论计算值非常接近, 其中正弯矩区试验值与计算值的平均比值为1.00, 变异系数为0.04, 负弯矩区二者平均比值为1.01, 变异系数为0, 由此可见, 计算结果与试验结果吻合较好。简化计算方法可用作界面焊钉锈蚀率较小情况下钢-混组合梁抗弯承载力定量和定性分析。   相似文献   

8.
为了提高普通钢筋混凝土梁的耐久性,设计了一种超高性能混凝土(UHPC)-高性能混凝土(HPC)组合梁新型结构,开展了锈蚀后UHPC-HPC组合梁的抗弯性能试验,研究了氯盐侵蚀后组合梁抗弯承载力降低的机理,分析了腐蚀程度、截面形式与预损伤对其抗弯性能的影响;引入钢筋屈服强度折减系数、截面积折减系数与混凝土预损伤系数,提出了锈蚀后UHPC-HPC组合梁抗弯承载力计算方法,并验证了计算方法的可行性。分析结果表明:锈蚀后梁体抗弯承载力降低主要原因为钢筋抗拉强度下降,梁体刚度退化与韧性减弱,钢纤维阻裂效果削弱;锈蚀后UHPC-HPC组合梁的破坏表现为跨中附近出现1条主裂缝或加载点附近出现2条主裂缝;UHPC-HPC组合梁的受力过程分为线弹性、裂缝发展和屈服3个阶段,梁体截面混凝土应变基本符合平截面假定;侵蚀时间越长,组合梁的开裂荷载和承载力降低越大,通电快速侵蚀10 d时,降幅分别达16.2%和10.9%;锈蚀后T形梁比矩形梁开裂早,前者的开裂荷载比后者降低8.1%,后期刚度下降较快;预损伤显著影响梁的整体刚度,预加载后梁的整体刚度降低,混凝土损伤后的预损伤系数为0.984;锈蚀率越大,钢筋的屈...  相似文献   

9.
为了研究有粘结预应力AFRP-钢混合配筋混凝土构件的抗弯性能,基于平截面假定和截面内力平衡条件,推导了预应力AFRP-钢混合配筋混凝土构件适筋破坏情形下正截面受弯承载力以及截面开裂弯矩的计算公式,利用推导的计算公式对五组具有相同整体配筋率、不同初始张拉控制应力的预应力混合配筋构件抗弯性能进行了研究,对预应力AFRP-钢混合配筋构件与普通混合配筋构件的极限抗弯承载力与抗裂承载力进行了对比.研究表明:按照给出的预应力AFRP-钢混合配筋混凝土构件抗弯承载力及开裂弯矩计算公式可较好地反映结构的受力特征;在预应力AFRP筋与普通AFRP筋极限抗拉强度相同的情形下,将预应力AFRP筋代替普通AFRP筋材,对AFRP-钢混合配筋混凝土构件极限抗弯承载力提升的效果并不明显;预应力AFRP-钢混合配筋混凝土构件可以有效地提升结构的抗裂承载能力.在算例中,当张拉控制应力σcon接近于预应力AFRP筋极限抗拉强度的25%时,构件抗裂承载力提升78.7%,从而有效延迟了截面裂缝开裂的时间,增大了结构的抗弯刚度.  相似文献   

10.
考虑不同加载方式与下翼缘宽度, 对3根带混凝土翼板的圆管翼缘钢-混凝土组合梁进行抗弯性能试验, 分析了试验梁的抗弯承载性能与破坏形态; 基于试验梁的抗弯特征, 推导了组合梁屈服弯矩和极限弯矩简化计算公式。研究结果表明: 试验梁均发生典型的塑性弯曲破坏, 稳定性良好; 达到极限承载力时, 梁端处上翼缘钢管与混凝土翼板相对滑移均小于0.43 mm, 试验梁体现了良好的协同工作性能; 随下翼缘宽度的增加, 试验梁刚度与承载力增大, 对于下翼缘宽度分别为150、260、300 mm的试验梁, 其屈服弯矩的比值为1∶1.44∶1.55, 极限承载力的比值为1∶1.31∶1.40;随着试验梁承受弯矩的增大, 当中性轴上升至混凝土翼板时, 钢管混凝土处于受拉状态, 可不考虑钢管与内填混凝土的套箍效应, 而当塑性中性轴位于上翼缘钢管混凝土内时, 可不计入该套箍作用对极限抗弯承载力的影响, 但其可促进延性的继续发展; 试验梁的位移延性系数均大于3.35, 延性较好; 屈服弯矩、极限弯矩理论计算值与试验值的比值分别为1.02~1.04、0.96~1.03, 吻合良好, 因此, 所出提出的简化理论计算公式简单、可靠。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号