首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
基于GT—Power的汽车排气消声器性能分析及改进   总被引:3,自引:0,他引:3  
利用GT-Power软件建立了某发动机工作过程与消声器的耦合仿真模型,得到消声器的插入损失和压力损失,仿真计算结果与试验结果基本一致,验证了该仿真模型的正确性.在保证压力损失不大于32 kPa的设计要求下,对消声器结构进行了局部改进.仿真结果表明,改进后消声器中高转速下的插入损失增加1~2 dB(A),较好地满足了该消声器的消声性能要求.  相似文献   

2.
应用GT-Power软件建立某摩托车发动机工作过程的仿真模型,并通过与消声器模型的耦合仿真,得到改进前后消声器的插入损失和压力损失。仿真结果表明,改进后的消声器在压力损失变化不大的前提下,使得插入损失增加了5~9dB(A)。计算结果可为排气消声器的设计和性能的改善提供指导。  相似文献   

3.
文章基于GT-Power软件,对某乘用车消声器传递损失与背压仿真分析过程做了详细介绍,得到消声器传递损失曲线与背压值。在保证消声性能不下降的前提下,对此消声器进行降低背压的优化设计,最后通过试验验证仿真分析结果。文章可对汽车消声器设计起到参考作用。  相似文献   

4.
集成式SCR催化转化消声器性能研究   总被引:1,自引:0,他引:1  
运用GT-Power软件对两种不同结构的集成式SCR催化转化消声器进行了声学性能模拟,通过试验研究对比分析了集成式SCR催化转化消声器的压力损失及其NOx转化效率。结果表明:在增加穿孔管后集成式SCR催化转化消声器的消声效果在400~750 Hz区间内受到了削弱,在750~1 000 Hz区间内增强,增加穿孔管后压力损失增加。在绝大部分工况下,增加穿孔管后SCR催化转化消声器的NOx转化效率要明显高于无穿孔管的结构。  相似文献   

5.
应用GT-Power软件及其Muffler模块建立了简单扩张式抗性消声器模型,在模型的基础上对抗性消声器的结构和消声性能进行了模拟仿真分析,主要分析了扩张比对抗性消声器消声性能的影响,有利于消声器的优化设计,便于对消声器性能的进一步分析。  相似文献   

6.
为了降低某款轿车排气噪声,采取增加玻璃棉、调整消声器内部管路和隔板的穿孔率与穿孔位置等措施,提升消声器的降噪性能,并利用GT-Power软件分析其传递损失。经试验验证,改进消声器后,车内噪声最大降低4 d B(A),尾管噪声实现全转速段降低。  相似文献   

7.
消声器内部压力脉冲是造成辐射噪声的主要原因之一,因此预测内部压力对研究消声器辐射噪声具有意义.采用GT-Power软件建立汽车发动机和消声器一维模型,从而进行仿真分析,预测消声器内部压力时序值;通过Matlab软件DFT变换对其压力时序值进行频谱分析,得到了压力频域值.通过与试验对比,验证了仿真模型预测压力时序值的准确性和预测压力频域值的有效性.  相似文献   

8.
排气净化消声器声学性能数值仿真方法的研究   总被引:1,自引:0,他引:1  
采用一种一维和三维混合的方法进行排气净化消声器的声学仿真.首先建立一维的发动机模型计算发动机噪声源特性,采用准一维解析方法推导消声器中催化转化器的声学传递矩阵;然后应用三维有限元法计算消声器的四极参数;最后应用声源特性和消声器四极参数计算各工况下的消声器插入损失.某款排气净化消声器插入损失的数值仿真结果与试验数据吻合,验证了该方法的可靠性和准确性.  相似文献   

9.
运用二维解析法建立了阻抗复合式消声器的声学模型,分析了包含吸声材料和穿孔元件的阻抗复合式消声器的声学特性.基于四传声器传递函数法在阻抗管上测量了阻抗复合式消声器的传递损失.结果表明,实验结果和理论结果具有良好的一致性,阻抗复合式消声器的内部结构、吸声材料的流阻率与填充位置和混合材料对消声器的消声性能有较大的影响.采用阻抗复合式消声器可以提高消声器的消声性能,拓宽消声器的消声频带.  相似文献   

10.
发动机进气系统声学元件设计方法研究   总被引:1,自引:0,他引:1  
利用GT-Power软件建立了某发动机模型,进行了进气系统插入损失的分析,并找到了插入损失的3个最大值.结合插入损失的计算结果,利用所开发的进气系统声学元件中心频率设计专家系统.充分考虑各声学元件传递损失影响参数,依次进行了谐振腔、空滤器和四分之一波长管的设计.对发动机进气口噪声的计算机模拟仿真结果表明,本文提出的进气系统声学元件设计方法具有工程实用价值.  相似文献   

11.
隧道噪声传播扩散规律及其检测方案探讨   总被引:1,自引:0,他引:1  
隧道噪声是影响行车环境和安全的重要因素,掌握其传播扩散规律是开展噪声控制的前提和依据。通过理论与实测相结合的方法对隧道噪声大小、分布规律、混响时间及频谱特性进行研究,并对隧道检测方案进行探讨。研究结果表明: 1)隧道噪声大小在空间分布具有一定的规律性,沿纵向呈中间高两端低的分布规律,且在隧道进口前50 m增加迅速; 2)隧道横断面内的直达声是噪声的主要来源,一次反射声在其声聚焦处对噪声影响巨大,而混响声则恶化了隧道内的整体噪声情况; 3)隧道内噪声主要是中低频噪声且呈现明显的双峰状,低频和中频峰值分别出现在100 Hz和1 200 Hz附近; 4)隧道混响时间与隧道断面形状、边界平均吸声系数以及噪声频率有关,周长面积比越大、吸声系数越大以及噪声频率越高都会使得混响时间变小; 5)隧道噪声检测参数应包含A计权声压、噪声频谱特性和混响时间,具体测点布置应综合考虑隧道长度和横断面形式,并结合当前技术手段科学制定。  相似文献   

12.
针对某乘用车消声器在发动机转速1 500~3 000 r/min范围内尾管噪声偏大的问题,应用GT-Power软件建立发动机及排气系统模型,并对该模型进行了试验验证。应用DoE方法找到了对消声器性能影响较大的参数,建立了消声器性能综合评价体系。依据运行工况及指标的重要程度为各转速下的评价指标设计了相应的权重,通过多目标优化计算得到了最优化的消声器结构参数。优化后消声器的模拟计算结果表明,在发动机转速1 500~3 000 r/min范围内,尾管总噪声和2阶噪声有较大程度上的降低。  相似文献   

13.
为改变高速公路交通噪声的严重污染现状,设计一种新型变截面双空腔吸声结构,其是由金属吸声板、前部变截面空腔、中间吸声隔层、后部空腔、背部隔声板5大部分构成。由混响室吸声系数的测定试验可知,该吸声结构在250~1 000 Hz中低频段的吸声系数均在0.65以上,总体降噪系数均大于0.60,较传统吸声结构,其吸声降噪效果有显著提升。  相似文献   

14.
郭勇  冯屹  王海洋 《天津汽车》2009,(10):35-37
汽车车外噪声是交通噪声中最主要的部分,是汽车制造鉴定中一个重要指标。文章针对某SUV车采用车外加速噪声分离试验的方法识别主要的噪声源,根据被测试样车车外主要噪声源的特性合理地选择吸声、隔声材料及噪声控制方案,对其进行降噪处理,使被测车辆车外加速噪声由79.4dB(A)下降到72.5dB(A),满足了ECE R51对该类车辆车外加速噪声限值的要求。  相似文献   

15.
轻型载货汽车车外噪声分析与控制   总被引:1,自引:0,他引:1  
用声强扫描法对国产某轻型载货汽车车外噪声源进行了识别,确定了其车外主要噪声源。开发了材料声学特性测量系统,并对多种车用吸声、隔声材料进行了测试与分析。根据被试轻型载货汽车车外主要噪声源的特性合理地选择吸声、隔声材料和噪声控制方案,对其进行了降噪处理。通过对降噪前、后该车车外噪声进行测试分析表明,采取降噪措施后,被试车辆车外动态加速噪声由84dB(A)下降到78dB(A),能够满足国家标准GB1495—2002对该类车辆车外动态加速噪声限值的要求。  相似文献   

16.
车内噪声产生机理及降噪措施   总被引:2,自引:0,他引:2  
简要介绍车内噪声产生机理及降低车内噪声的常用措施,即通过密封,隔声结构,吸声,减振材料等措施的应用,达到降低车内噪声的目的,为车身降噪结构设计和材料应用提供参考。  相似文献   

17.
采用穿孔板制作局部隔声罩,用于降低某6缸柴油机油底壳的噪声辐射。通过对该柴油机油底壳的辐射噪声进行频谱分析,针对其噪声特点,设计了用于油底壳的局部隔声罩。试验结果表明,实测平均声压级降低了1.0 dB,吸声降噪效果明显。  相似文献   

18.
DPF对柴油机性能影响的仿真研究   总被引:3,自引:1,他引:2  
利用GT-Power软件,分别建立了柴油机颗粒捕集器(DPF)和D19柴油机的仿真模型,并把二者进行耦合,研究了DPF对D19柴油机的功率、扭矩、缸压及燃油消耗率等方面的影响。研究结果表明,加装DPF会使发动机排气背压升高,输出功率与扭矩下降,缸内最高燃烧压力降低,燃油消耗率上升,且随着载体内颗粒物数量的增加,这种趋势更为明显;当DPF内炭烟加载量接近满载达到10 g/L时,D19发动机的功率、扭矩已有明显的下降趋势,在高转速下最高降幅达4%左右,燃油消耗率增幅为3%左右。  相似文献   

19.
多穿孔板的小孔直径与噪声频率紧密相关,小孔直径决定着噪声频谱中的主振频.从消声量公式看出,小孔数量增加、小孔总面积增大和小孔直径减小、穿孔板厚减薄等,肯定利于降噪.因此,对小孔直径、穿孔板厚度都有一定要求.对于摩托车高转速工况噪声不达标问题,完全可以通过改变内接管、插入管及多孔穿孔板小孔的尺寸来解决,以削减掉频谱中的主振频.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号