首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 126 毫秒
1.
为了揭示多车道高速公路超高过渡段积水分布规律,基于流体动力学理论,选取典型多车道高速公路超高过渡段设计参数,利用道路BIM设计软件建立了40组三维道路模型;分析了路面积水量和排水设施径流量的关系,建立了考虑排水设施与路面构造深度影响的降雨模拟方案;采用离散相模型和多相流模型耦合,模拟了降雨条件下的路面积水状态;分析了不同组合参数下的超高过渡段积水厚度数据,得到了合成坡度、道路宽度、降雨强度与超高渐变率对积水厚度的影响模式,计算了各车道最大积水厚度,分析了六车道、八车道高速公路积水横向分布规律。研究结果表明:积水厚度与合成坡度、超高渐变率负相关,与降雨强度、道路宽度正相关,其中降雨强度对积水厚度的影响最大,超高渐变率对积水厚度的影响最小;合成坡度为2.02%~8.54%,降雨强度为1~5 mm·min-1时,多车道高速公路超高过渡段最小积水厚度为0.58 mm,最大达到28.35 mm;当降雨强度为5 mm·min-1时,高速公路超高过渡段内外侧车道最大积水厚度差异明显,六车道由内侧车道到外侧车道的最大积水厚度比例为1.0∶3.1∶3.3,八车道为1.00∶0.96∶1.03∶1.36;多车道高速公路超高过渡段积水厚度峰值先出现在道路中间附近,然后向外侧移动,最大积水厚度一般出现在外侧车道。   相似文献   

2.
雨天公路S型曲线超高缓和路段易形成积水,影响行车安全。以力学为基础,运用有限差分,建立了超高渐变段的水流路径长度与纵坡的关系模型;考虑车辆发生滑水的危险状态,得到水流路径控制长度。以公路单路拱S型曲线为研究对象,对3组不同车道数和7种不同纵坡工况下的±2%超高渐变段的水流路径长度进行分析。结果表明:纵坡由0.5%增加到6%,水流路径长度平均增大2.83倍,纵坡越大,水流路径越长;当纵坡大于4%时,不同车道的水流路径都超过了限定值。以水流路径长度为控制指标,给出了不同车道数S型曲线平缓超高路段最大纵坡建议值。  相似文献   

3.
雨天公路S型曲线超高缓和路段易形成积水,影响行车安全.以力学为基础,运用有限差分,建立了超高渐变段的水流路径长度与纵坡的关系模型;考虑车辆发生滑水的危险状态,得到水流路径控制长度.以公路单路拱S型曲线为研究对象,对3组不同车道数和7种不同纵坡工况下的±2%超高渐变段的水流路径长度进行分析.结果表明:纵坡由0.5%增加到6%,水流路径长度平均增大2.83倍,纵坡越大,水流路径越长;当纵坡大于4%时,不同车道的水流路径都超过了限定值.以水流路径长度为控制指标,给出了不同车道数S型曲线平缓超高路段最大纵坡建议值.  相似文献   

4.
针对山区高速公路缓和坡段设置不合理问题,选取六轴铰接列车作为设计车型,以20 km/h的速度折减量作为界定条件,对连续长陡上坡路段的期望坡长进行界定;以8个连续长陡上坡路段为研究对象,选择车速偏差作为安全指标,借助Trucksim仿真软件分别建立"陡缓陡"纵坡和单一坡度纵坡组合2种纵断面线形模型,仿真得到2种线形组合方案对不同比功率货车爬坡性能的影响。研究表明:设置缓和坡段对设计车辆平均速度的提升作用较小,但可在路程前段起到缓速作用,当坡度小于等于3%时,缓坡的速度恢复作用较小,当坡度大于3%时,缓和坡段可在路程中后段起到恢复速度的作用。因此,坡度较大时采用"陡缓陡"设计方案更有利于行车安全。  相似文献   

5.
为研究强降雨对高速列车空气动力学性能的影响, 利用Euler-Lagrange方法建立了强降雨环境下高速列车空气动力学计算模型; 空气建模为连续相, 采用Euler方法描述, 雨滴建模为离散相, 采用Lagrange方法描述, 并采用相间耦合方法对降雨环境进行模拟; 分别开展列车气动性能计算及雨滴降落仿真, 并与试验数据进行对比, 验证计算方法的准确性; 数值仿真了强降雨环境下高速列车的流场结构和气动特性。计算结果表明: 随着降雨强度的增加, 在雨滴的冲击作用下, 流线型头型前端区域的正压逐渐增大, 流线型头型后端区域的负压逐渐减小, 从而导致头车气动阻力增大; 降雨强度对高速列车头车气动阻力系数的影响较为显著, 而对气动升力系数的影响较小; 与无降雨环境相比, 当降雨强度为100~500 mm·h-1时, 200 km·h-1车速下的气动阻力系数增加0.004 0~0.020 4, 气动阻力增加85~432 N, 增大率为2.64%~13.46%;300 km·h-1车速下的气动阻力系数增加0.002 7~0.013 7, 气动阻力增加129~652 N, 增大率为1.78%~9.05%;400 km·h-1车速下的气动阻力系数增加0.002 3~0.009 8, 气动阻力增加195~829 N, 增大率为1.52%~6.49%, 因此, 不同车速下, 气动阻力系数随着降雨强度的增加而增大, 且与降雨强度近似呈线性关系; 当车速为300 km·h-1, 降雨强度为100 mm·h-1, 雨滴粒径由2 mm增加为4 mm时, 气动阻力系数由0.152 0增大到0.154 9, 气动阻力增加138 N, 增大率为1.91%, 因此, 高速列车气动阻力系数随着雨滴粒径的增加而增大, 且与雨滴粒径近似呈线性关系。   相似文献   

6.
为明确山区隧道出入口区段的车辆运行特性和驾驶行为,揭示隧道洞口交通事故的发生机制,在高速公路和城市快速路各选择3座隧道,采集了小客车和货车在隧道出入口区段的断面速度,高速公路单个断面观测样本大于500 veh,快速路隧道单个断面样本大于1 100 veh,基于断面数据分析了车辆行驶速度的变化规律和影响因素,并建立了运行速度预测模型。分析结果表明:驾驶人临近隧道洞口时会减速,小客车速度降幅为12~21 km·h-1,货车速度降幅为2~10 km·h-1,货车速度降幅低于小客车;洞口位置小客车运行速度大于80 km·h-1,货车运行速度大于70 km·h-1;高速公路隧道出入口段的车速范围为75~110 km·h-1,快速路隧道出入口段的车速范围为60~88 km·h-1,高速公路隧道出入口段的车速普遍高于城市快速路隧道; 驾驶人进入隧道洞内适应环境之后会加速行驶,驶出隧道时有加速行为,但当隧道出口前方有小半径弯道和互通立交时,驾驶人会减速以适应前方的道路条件;隧道入口前100 m至洞口范围内的车辆减速度最大,货车减速度范围为0.23~0.58 m·s-2,小客车减速度范围为0.47~ 0.70 m·s-2;同一断面的速度观测值存在较强的离散性,表明车辆之间存在明显的纵向干涉,容易发生追尾事故。   相似文献   

7.
根据山区圆曲线路段的特点,分析了轮胎的受力和变形情况,建立了半挂汽车列车与山区圆曲线路段的耦合动力学模型。以牵引车和半挂车的轮胎侧偏角和折叠角为指标,运用提出的动力学仿真法分析了不同车速下圆曲线路段半径、超高、滑动附着系数对半挂汽车列车行驶安全性的影响,并与运行速度法和理论极限速度法的计算结果进行对比。仿真结果表明:当圆曲线半径为125m,路面超高为2%,滑动附着系数分别为0.20、0.35、0.50、0.80时,运用动力学仿真法求得的临界安全车速分别为20、35、55、72km·h-1,运用运行速度法求得的临界安全车速均为50km·h-1,运用理论极限速度法求得的临界安全车速分别为18、20、25、30km·h-1;当圆曲线半径为250m,滑动附着系数为0.35,超高分别为0、2%、4%、6%时,运用动力学仿真法求得的临界安全车速分别为35、38、25、20km·h-1,运用运行速度法求得的临界安全车速均为60km·h-1,运用理论极限速度法求得的临界安全车速分别为30、31、32、33km·h-1;当路面超高为6%,滑动附着系数为0.50,圆曲线半径分别为125、250、400、650m时,运用动力学仿真法求得的临界安全车速分别为58、62、70、72km·h-1,运用运行速度法求得的临界安全车速分别为50、60、68、71km·h-1,运用理论极限速度法求得的临界安全车速分别为28、37、48、60km·h-1。可见,提出的动力学仿真法考虑了车辆悬架动力学特性、天气与路面条件,可以准确描述半挂汽车列车的运行状态。  相似文献   

8.
高速公路半幅封闭施工区限速标志效能试验   总被引:1,自引:0,他引:1  
采用现场试验与统计分析,研究了高速公路半幅封闭施工作业区交通标志尤其是限速标志的警示效能,提出了分阶限速方案和交通标志效能试验方案,选择典型路段开展了既有交通标志效能试验、限速标志位置试验、分阶限速效能试验和优化后交通标志效能试验。试验结果表明:既有交通标志尤其是限速标志效能不足,试验路段客货车经过限速标志后车速远高于限速值,且速度降低幅度很小。通过分阶限速优化交通标志设置,施工作业区车辆速度明显降低,客车速度降低38km·h-1,货车速度降低32km·h-1;施工作业区客车运行速度与限速值的差值从60km·h-1降低到15km·h-1,货车速差从40km·h-1降低到5km·h-1,基本达到限速值,整个交通流运行速度与限速值差值变化趋势一致。可见,分阶限速优化后的交通标志效能提高明显。  相似文献   

9.
超高设计是公路设计中非常重要的设计内容,结合新标准研究了超高缓和段长度的确定方法、超高的过渡方式,以及绕行车道内边缘旋转时超高的计算方法,并深入讨论了当超高渐变率小于1/330情况下的超高计算方法。  相似文献   

10.
通过对超高缓和段合成坡度的分析,提出了在最小超高渐变率的条件下部分超高缓和段长度的确定方法。通过分析计算超高缓和段合成坡度(<0.5%)的面积,阐述了以其为设计控制指标的合理性,对1/330的限制及不同旋转方式进了分析。  相似文献   

11.
城市快速路速度引导预测控制模型   总被引:1,自引:0,他引:1  
在城市快速路控制系统中,将速度引导作为控制变量,建立了宏观动态交通流模型。以车辆总行程时间与速度引导为目标函数,计算了城市快速路入口区域流量和匝道入口区域流量,建立了快速路速度引导预测控制模型,对速度引导进行优化设计,利用MATLAB软件对下游交通流突变进行仿真分析。分析结果表明:通过速度引导控制,交通流平均速度由72.704 6km.h-1上升到74.167 6km.h-1,交通流平均密度由23.011 2veh.km-1下降到21.156 7veh.km-1,波动均小于8%;速度方差下降,且最大值仅为420(km.h-1)2;速度引导控制前后的速度方差与密度方差之比分别为3.57、1.91;在交通流突变时段内,速度引导控制前后的速度方差与密度方差之比分别为4.56、2.34。可见,速度引导控制模型有效。  相似文献   

12.
为研究山地城市快速路桥隧组合场景的“车-路”耦合环境和线形协调程度,在重庆市主城区快速路3隧2桥组合场景开展自然驾驶实验,采集18名驾驶员的实时运行速度和13个断面的小型车地点车速,根据道路条件和运行速度数据构建线形综合评价模型。实验结果表明:在隧道-桥梁-隧道多场景切换连接方式中,主线路段的运行速度均值分布在50.00~64.25 km·h-1;驾驶员在桥梁路段行驶最为警惕,从桥梁驶进衔接匝道或隧道入口时,车辆速度明显减小,有15%以下的车辆会低速通行或经历严重的交通拥堵,其速度分布在8.00~39.50 km·h-1;验算实验路段的“车-路”耦合强度发现,实验路段整体运行安全状况水平良好,线形条件较好。对山地城市快速路桥隧组合场景的速度行为管控不能只依靠对单体隧道或桥梁的交通管理手段和治理措施,需考虑与上游道路衔接路段的距离和受信号控制的时长等。  相似文献   

13.
线性超高过渡设计采用直线顺坡,在超高过渡段的起、终点都有一个折角,使纵坡发生突变,影响行车的稳定性和舒适性,并导致路面受力发生显著变化.通过对线性超高过渡设计方法缺陷的分析,借鉴理想缓和曲线须满足的条件,提出了超高过渡设计的理想条件,并通过数学推导得出满足理想条件的三次曲线.分析了三次曲线超高过渡可能引起的过渡段附加纵坡过大和横向排水不畅的问题.研究结果表明:采用三次曲线超高过渡,在过渡段长度相同时,附加纵坡最大值为线性过渡的1.5倍,须对超高过渡段最小长度进行重新计算;在超高横坡不大于6%时,横向排水不畅的缓坡路段长度有所缩短,更有利于横向排水.最后,阐述了各种情况下三次曲线超高过渡的设计计算方法.  相似文献   

14.
车辆系统空气弹簧失气安全性分析   总被引:1,自引:0,他引:1  
建立了具有刚度衰变特性的空气弹簧失气模型和非线性粘滑接触模型,结合车辆系统动力学,模拟空气弹簧失气动态过程与失气后的应急状态,分析了空气弹簧失气后车辆系统的稳定性与空气弹簧突然失气对车辆动力学性能的影响,研究了不同失气过程时长、运行速度与曲线通过工况下空气弹簧失气车辆的安全性。计算结果表明:空气弹簧失气后车辆临界速度由623km.h-1大幅降低为351km.h-1。空气弹簧突然失气导致轮轨垂向力减小,轮重减载率增大,且失气过程越短,轮重减载率越大,失气过程为0.2s时轮重减载率达到0.651。车辆运行速度低于300km.h-1时,车速对轮重减载率和轮轨力影响不明显,当大于300km.h-1时,减载率随车速增大迅速增大。车辆通过曲线时,在圆曲线上失气最危险,轮重减载率最大为0.652。  相似文献   

15.
高分辨率的排放因子是进行交通能耗排放测算的重要参数,然而,由于数据采集与质量控 制问题,排放因子速度修正曲线常存在异常波动。为提高排放因子速度修正结果的准确性,本文 分别从比功率分布和排放率两个角度分析排放因子敏感性和区间容许误差,建立机动车工况数 据和PEMS排放数据需求量计算模型。敏感性分析结果表明,个别比功率区间分布误差是造成 排放因子速度修正曲线产生异常波动的重要原因;排放率误差会导致排放因子速度修正结果出 现整体性误差。数值模拟计算结果表明,在95%的置信水平下,平均速度在20~120 km·h-1内,控 制快速路CO2排放因子速度修正误差不超过1%:需采集40 min的排放数据,细化至1 kW·t-1 粒度 下各比功率区间数据需求量差异显著;各平均速度下需采集710 min工况数据,相同误差下,80~ 120 km·h-1 内工况数据需求量更低;为进一步消除曲线的异常波动,需大量增加平均速度为64~ 80 km·h-1 范围内的工况数据量。本文的研究结果对工况和排放数据的采集工作有实际指导意 义,可有效克服曲线异常波动问题,提高排放因子结果可靠性,为节能减排工作提供支持。  相似文献   

16.
利用大型有限元商业软件ABAQUS建立了车辆-齿轨铁路导入装置耦合动力学有限元模型;仿真了齿轨车辆通过齿轨铁路导入装置的过程,分析了车辆与齿轨铁路导入装置的动态相互作用;考虑不同参数的影响,研究了齿轨铁路导入装置振动响应、结构应力、动态接触力等动态特性响应规律.研究结果表明:随着支撑弹簧预紧力的增大,齿轮转速能更快达到...  相似文献   

17.
公路设计超高计算方法的研究   总被引:3,自引:0,他引:3  
超高设计是公路设计中非常重要的设计内容,本文结合新标准研究了超高缓和段长度的确定方法、超高的过渡方式,以及绕行车道内边缘旋转时超高的计算方法,并深入讨论了当超高渐变率小于1/330情况下的超高计算方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号