首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
该文结合依托工程,对高填土大跨钢波纹管涵的力学性能进行了现场测试和有限元分析,并探讨了钢管波纹参数、管顶填土高度、土体弹模、不对称填土、地基不均匀沉降等对钢波纹管涵应力和变形的影响。结果表明:钢波纹管涵变形和应力随填土高度增加而增长,但增长趋势逐渐变缓、土-拱效应明显;有限元分析与试验结果相吻合,表明有限元模型能够满足设计精度要求;钢波纹管最大变形和等效应力随波高、土体弹模增大而减小,随波距增加而增大。最后,将各国规范的设计计算结果与有限元、测试结果进行对比,提出钢波纹管涵土压力设计计算采用AASHTO或中规、管壁应力设计计算采用CHDBC的建议。  相似文献   

2.
通过对3种不同直径及不同壁厚的钢波纹管涵对应不同的填土高度进行有限元计算,得出钢波纹管涵最大等效应力、最大竖向变形随填土高度的变化情况,分析了钢波纹管涵及周边土体的等效应力分布规律。  相似文献   

3.
为了解双孔钢波纹管涵应用于高填方路基时径向土压力及变形特性,结合依托工程,通过现场试验,并精细化有限元建模方法对其进行分析。结果表明,双孔2-φ5.5 m钢波纹管涵,变形与径向土压力随着填土高度的增加而增大,填土高度达到管顶24 m尚未出现明显土拱效应;径向土压力沿管周分布呈椭圆形,采用双孔管涵,结构受力与单管涵基本相同,最大径向土压力出现位置不同,位于管斜下方45°位置;有限元分析与试验结果相吻合,表明有限元分析模型精度满足工程要求。最后,将公路桥涵规范中土压力计算结果与有限元、测试结果进行对比,规范计算得到的最大土压力偏大,最小土压力偏小。  相似文献   

4.
为了获得高填方下钢波纹管涵变形的定量计算方法,并拟得到判定钢波纹管涵刚柔性的计算方法。在考虑钢波纹管涵受压变形与涵侧土体压缩变形相互影响的基础上,对涵土相对刚度问题进行了深入探讨。在考虑钢波纹管涵截面参数惯性矩特性的基础上,从分析规范中涵土相对刚度系数的计算方法入手,假设涵顶平面内外所受填土压力水平分布相同,涵侧填土对管涵横向变形产生一定的弹性抗力,引入了Spangler的涵土相互作用模型,推导了钢波纹管涵的变形计算公式和涵土相对刚度系数计算公式,同时,在考虑涵侧土体压缩变形模量线性增加的基础上,代入相关参数,将计算结果与现场试验结果进行比较,结果表明:钢波纹管涵洞随填土压力变化时,其变形计算值曲线规律与试验实测收敛值基本一致;应用推导的涵土相对刚度系数理论公式计算结果,可近似地判定管涵的刚柔性,通过理论计算,将本工点所用管涵判定为柔性涵洞,这也被试验测试得到涵顶垂直土压力系数小于1.0的结果间接验证,因此这既是对规范公式存在不足的补充,又为钢波纹管涵刚柔性的判定提供了新方法;通过涵土相对刚度系数公式的变换,得到涵顶平面内外土柱沉降差±δ与涵土相对刚度系数αs在本质上是相通的,故亦可用±δ判定涵土的相对刚度,这为判定涵洞刚柔性又提供了一种可行的方法。  相似文献   

5.
柔性、高强度的钢波纹管涵洞,不仅具有优良的适应地基与基础变形的能力,而且具有自重轻、运输方便、施工简单、造价低、对地基扰动小等优点,故其具有较为广泛的应用前景。该文通过对高填方钢波纹管涵洞进行野外现场试验,分析钢波纹管涵洞管周和管外各点所受力的大小及变化规律,为今后高填方路基中钢波纹管涵洞施工提供参考资料。通过研究取得以下结论:钢波纹管各点所受土压力随着填土高度升高而增加;在填土高度一样时,管周各点的土压力值不同,其中管周60°处的土压力最大,管中90°处土压力最小;与管顶水平的管外土压力大于管周各测点的土压力,这对于减小钢波纹管在高填方路基回填时的变形有指导作用。  相似文献   

6.
结合依托工程,对高填土大跨波纹钢管涵采用有限元进行力学性能分析,并讨论了不对称填土、地基不均匀沉降等不利因素对波纹钢管涵应力和变形的影响。结果显示,波纹钢管涵变形和应力随填土高度的加大不断上升,但上升趋势逐渐减小,土-拱效应明显;管涵的力学行为受不对称填土的影响较大,结构变形和应力受地基不均匀沉降的影响较小,波纹管涵结构两侧对称填土要求较高,但其适应高填方及地基变形的能力较强。  相似文献   

7.
金属波纹管涵洞是采用波纹状管或由波纹状弧形板通过连接、拼装形成的一种涵洞形式,主要由钢、铝或塑料等材料制成。钢波纹管涵洞由于轴向波纹的存在使其具有优良的受力特征,轴向和径向同时分布因荷载引起的应力应变,可以更大程度上分散荷载的应力集中,更好地发挥钢结构的优势,故其具有广阔的应用前景。本文通过对高填方钢波纹管涵洞进行野外现场试验研究,随着施工中填土高度增加,分析了钢波纹管涵洞管外各点在有无土工格栅时所受力的大小及规律,为今后高填方路基中钢波纹管涵洞的施工提供参考资料。通过研究取得以下结论:钢波纹管各点所受土压力随着填土高度升高而增加;在填土高度一样时,与管顶水平的管外土压力大于管周各测点的土压力。  相似文献   

8.
为研究高填方盖板涵涵顶垂直土压力的分布特性,改进盖板涵土压力计算方法,采用离心模型试验与有限元软件分析不同填高下盖板涵涵顶垂直土压力分布形式与填土变形规律,揭示盖板涵涵顶垂直土压力分布特性的成因,通过正交试验研究涵顶土压力不均匀系数与填土高度、弹性模量、泊松比、容重以及内摩擦角的关系,建立考虑涵顶土压力分布特性的高填方盖板涵垂直土压力分析模型,得出盖板涵涵顶垂直土压力计算公式。结果表明:盖板涵涵顶垂直土压力沿跨径呈"马鞍形"分布,涵顶两端垂直土压力总体可达涵顶中心垂直土压力的2倍左右,涵顶两侧土压力应力集中程度明显高于涵顶中心附近;涵顶边缘附近受附加土压力的影响大于涵顶中心附近,此为涵顶垂直土压力为不均匀分布的成因;随着填土高度与容重的增加,涵顶土压力不均匀系数先增加后减小;涵顶土压力不均匀系数与填土的内摩擦角、泊松比呈负相关,与填土的弹性模量呈正相关;对涵顶土压力不均匀系数敏感程度的大小顺序为:内摩擦角填土高度弹性模量泊松比容重;文中公式计算得出的涵顶垂直土压力变化规律与数值模拟及模型试验成果较为吻合。  相似文献   

9.
采用有限元方法及模型试验对刚性地基上的上埋式涵洞进行施工模拟,分析方形涵洞和半圆形拱涵施工过程中填土沉降、等沉面及涵顶土压力的变化规律.结果表明:等沉面高度随填土高度的增大而减小,而且涵顶形状影响等沉面高度;涵顶形状不同,涵顶土压力分布和土压力系数变化很大.涵顶填土高度大于10倍涵洞高度时,方涵和半圆拱涵的等沉面高度分别趋近于3.1倍、2.7倍涵洞高度,涵顶土压力系数则分别为1.56、1.26.  相似文献   

10.
为考察软基上埋式箱涵受力特性,通过离心模型试验,研究了其竖向和侧向土压力、土压力系数随填土高度变化的规律及周围填土位移场的变化情况.试验结果表明,使用桩基的箱涵与两侧路堤产生了显著的差异沉降,并在涵洞处形成了驼峰;内外土柱差异沉降在路堤中形成了拱脚位于涵顶两侧的上凸压力拱,并使拱脚处竖向土压力集中,且竖向土压力系数随路堤填筑呈开口向下的抛物线分布,在某一涵顶路堤高度下达最大值;同时,随涵顶路堤填筑,涵洞侧向土压力和侧向土压力系数增加,由于涵侧路堤以沉降为主的位移模式与挡土墙后填土不同,涵洞侧向土压力小于现行规范值.软基上路堤、涵洞和地基的协同作用分析表明,传统的强涵基、弱地基的设计理念将使涵顶竖向土压力集中,并导致结构失效.为降低涵洞结构破坏风险,建议采用轻质填料填筑涵顶、涵洞反开挖施工和结构设计考虑涵顶竖向土压力集中等措施.  相似文献   

11.
以包茂高速公路工程为依托,通过现场测试高填方路基下涵洞外界面受力,研究了涵洞受力规律和内在机制。结果表明:涵顶土压力随填土高度增大非线性增加,其中侧墙顶土压力大于填土自重且其增长率随填土增加逐渐减小,涵顶中心土压力在填土达到一定高度后大于填土自重,且其增长率保持稳定;填土完成后,两侧墙顶土压力约为填土自重的2.1~3.0倍,涵顶中部土压力约为填土自重的1.4~1.8倍;侧墙土压力小于静止土压力,实测水平土压力与静止土压力的比值为0.03~0.61;涵洞基底土压力呈不均匀分布,实测基底土压力与涵顶土压力平均  相似文献   

12.
为探究高速黄土路基涵洞土压力分布特征,改进高填方涵洞结构设计,以山西省某拱涵为例,采用CANDE-2007有限元软件建立高填方涵洞数值分析模型,以涵洞设涵方式和填土高度为主要影响因素,揭示涵洞垂直土压力及沉降分布特征,分析不同填土高度下涵顶土压力系数变化,比较上埋式和沟埋式两种设涵方式涵洞涵顶土压力随填土高度变化特征,讨论设涵方式及土拱效应对涵洞应力的影响。在拱涵结构上部土体中布置土压力计,记录土体的实测土压力数据,并将数值模拟结果与实测数据结果相互验证。结果表明:涵洞中心与两侧土体的沉降明显不同,导致土拱效应的产生,是影响涵洞顶部垂直土应力变化的重要因素; 2种设涵方式涵洞涵顶土压力随填土高度变化均呈线性增长趋势;填土高度大于5 m后,随填土高度增加,上埋式涵洞土压力系数呈现先急剧增加再缓慢降低的变化趋势,涵顶伴随应力集中;而沟埋式涵洞土压力系数随高度增加逐渐降低后趋于稳定,其涵顶所受垂直土压力减小;沟埋式涵洞中心沉降值总是大于同等高度下上埋式涵洞的中心沉降;现场监测与数值模拟对比,实测土压力大于数值模拟结果,工程中涵顶应力集中现象更明显。  相似文献   

13.
基于原位观测试验,通过对不同填土高度的管涵荷载及变形、管涵及涵周土体应力分布的全程量测,对不同填土高度下大孔径波纹管涵的力学性能进行了深入分析。结果表明,管顶始终处于压应力状态,从管顶向下至90度范围截面承载逐渐转为拉应力,而从90度截面至管底,波谷截面主要承受拉力,并至管底达到最大值,而波峰截面则由拉应力向压应力转变,至管底为压应力状态。波纹管涵应力及变形均随着填土高度逐渐增长,但其增速逐渐变缓,并最终趋于稳定,其大小均满足波纹管涵的使用要求。而涵顶与涵底土压力测试数据表明,波纹管涵土压力值与规范方法计算值存在较大差异,且差异随填土高度的增加进一步加大,表明高填方段的管涵土压力计算应进行适当折减。  相似文献   

14.
黄明溪  李连生  高翔  李自坤 《公路》2021,66(12):71-75
为了研究大直径钢波纹管通道的受力与变形特性,以广东省某工程为依托,通过对该工程现场钢波纹管通道力学性能和受力变形的现场监测试验和后期数值计算,试验结果表明:钢波纹管通道具有很好的柔性变形能力,横向补偿能力强,波谷与波峰的切向应力变化基本呈现相反的趋势,但当填土高度超过管顶后,钢波纹管通道逐渐趋于均匀的环向受压状态,波峰与波谷两者的切向应力变化差距逐渐减小.测点径向土压力最大值出现在管斜下方两个点,所以钢波纹管通道斜下方两个位置是防止破坏的重点位置.试验和数值计算的结果存在一定的差距,但二者的变化规律整体相似,可以为今后钢波纹管通道设计施工提供一定参考.  相似文献   

15.
基于原位观测试验与理论研究,对高填方段波纹管涵的涵顶垂直土压力的分布特征与变化规律进行了探讨.首先,开展了高填方段波纹管涵垂直土压力现场观测试验.试验结果表明,高填方段管涵顶部存在土拱效应,规范的土柱法计算土压力值误差较大,偏于保守,而管涵顶部平面的土压力值并非均匀分布,存在明显的应力集中区域.在此基础上,结合试验规律及马斯顿理论,考虑由于土拱效应造成的应力集中现象,建立了高填方段波纹管涵垂直土压力计算模型,并进行了理论求解,从而提出了高填方段波纹管涵垂直土压力计算方法.最后,依据此模型对涵顶填土重度、土体内摩擦角、黏聚力、管径大小等主要影响因素进行了参数分析.结果表明,土体重度对管涵垂直土压力数值影响较大,而内摩擦角及黏聚力的影响较小.  相似文献   

16.
金属波纹管涵力学性能数值模拟   总被引:1,自引:0,他引:1  
基于青藏铁路波纹管涵试验工程,建立金属波纹管涵的等效受力模型,运用有限元方法对其进行数值模拟,研究铁路路基荷载及列车活载共同作用下金属波纹管涵的应力、应变及变形特点.研究发现,波纹管涵不论是竖向、轴向还是环向的拉压应变均是通过波纹沿环向在波峰与波谷之间相互传递,另外拉压应变在竖向、轴向和环向也是交替出现,相互转换.结果表明,波纹管涵身的波纹具有明显的传递应变的性能.波纹管涵的这一特点不但能有效抵抗由于竖向荷载造成的侧向变形,还能有效地把竖向荷载造成的竖向变形及侧向变形通过波纹传递到轴向,充分表现了它适应变形的优良性能.  相似文献   

17.
为了使钢波纹管涵更好地发挥钢结构的优势,减少公路运营过程中的沉降、变形,以武安市莹玉公路为实例,通过创建波纹管模型,对运营车辆及填土对钢波纹管涵的受力影响进行分析,得出管周60°~120°应变值最大;同时对波纹管不同部位采取不同的回填方法,使填料与管涵的整体协调性良好,该方法为波纹管涵施工提供了理论指导。  相似文献   

18.
《公路》2015,(6)
通过对大直径高填方钢波纹管涵洞的现场试验,选取管涵中3个特征断面,在特征点布设应变计、土压力盒以及变形测量仪器,对钢波纹管涵洞的周围土压力、力学特性以及变形规律进行了研究分析。研究表明,钢波纹管的受力特性在轴向以受拉为主,在环向以受压为主,并且都在管底+12.2 m处存在明显的拐点;土压力在管底+18m处趋于平缓,最大变形达到管径的2.3%。  相似文献   

19.
为了推广钢波纹管涵洞在湿陷性黄土地区的应用,解决现有涵洞不均匀沉降问题,对钢波纹管涵洞施工过程中管周的受力特征进行研究。结果表明:钢波纹管内波峰、波谷、波侧填土初期应变值存在重新分布的现象;填土高度在管顶1.0~1.5 m时,管涵受力较为复杂,施工时应重点观测;波峰整体下半圆受拉,上半圆受压,而波侧与其相反;管外土压力随着填土高度增加而增加,且填土管顶增加1.5 m以内增长速度较快,后趋于平缓。  相似文献   

20.
高填路堤涵洞受力及变形特性有限元分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究高填路堤涵洞的受力及变形特性,建立了有限元计算模型。计算结果与工程实测吻合较好,并研究了涵顶土压力和沉降值的影响因素,得出了涵洞结构、尺寸、涵洞周围填土密实程度、EPS的厚度和宽度对涵顶土压力和沉降值影响的规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号