首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hazardous materials routing and scheduling decisions involve the determination of the minimum cost and/or risk routes for servicing the demand of a given set of customers. This paper addresses the bicriterion routing and scheduling problem arising in hazardous materials distribution planning. Under the assumption that the cost and risk attributes of each arc of the underlying transportation network are time-dependent, the proposed routing and scheduling problem pertains to the determination of the non-dominated time-dependent paths for servicing a given and fixed sequence of customers (intermediate stops) within specified time windows. Due to the heavy computational burden for solving this bicriterion problem, an alternative algorithm is proposed that determines the k-shortest time-dependent paths. Moreover an algorithm is provided for solving the bicriterion problem. The proximity of the solutions of the k-shortest time-dependent path problem with the non-dominated solutions is assessed on a set of problems developed by the authors.  相似文献   

2.
Most of the studies address issues relating to the delivery from satellites to customers, which is throughout the end part of the linehaul-delivery system. Differing from the long-term strategic problems including the two-echelon vehicle routing problem (2E-VRP), the two-echelon location routing problem (2E-LRP) and the truck and trailer routing problem (TTRP) which make location decisions in depots or satellites, the paper introduces a short-term tactical problem named the two-echelon time-constrained vehicle routing problem in linehaul-delivery systems (2E-TVRP) that does not involve location decisions. The linehaul level and the delivery level are linked through city distribution centers (CDCs) located on the outskirts of cities. The 2E-TVRP has inter-CDC linehaul on the first level and urban delivery from CDCs to satellites on the second level. Vehicle routes on different levels are interacted by time constraints. A mixed integer nonlinear programming model for the 2E-TVRP is put forward, and a mixed integer linear programming model is used as the benchmark model. The Clarke and Wright savings heuristic algorithm (CW) improved by a local search phase is adopted. The 2E-TVRP formulations and the heuristic algorithm are tested by using 140 randomly-generated instances with up to 10 CDCs and 500 satellites. The computational results indicate that the heuristic can effectively solve various instances of the 2E-TVRP.  相似文献   

3.
The effectiveness of transit-based emergency evacuation highly depends on the location of pick-up facilities, resource allocation, and management. These facilities themselves are often subject to service disruptions during or after the emergency. This paper proposes a reliable emergency facility location model that determines both pre-emergency facility location planning and the evacuation operations afterwards, while facilities are subject to the risk of disruptions. We analyze how evacuation resource availability leverages individual evacuees’ response to service disruptions, and show how equilibrium of the evacuee arrival process could be reached at a functioning pick-up facility. Based on this equilibrium, an optimal resource allocation strategy is found to balance the tradeoff between the evacuees’ risks and the evacuation agency’s operation costs. This leads to the development of a compact polynomial-size linear integer programming formulation that minimizes the total expected system cost from both pre-emergency planning (e.g., facility set-up) and the evacuation operations (e.g., fleet management, transportation, and exposure to hazardous surroundings) across an exponential number of possible disruption scenarios. We also show how the model can be flexibly used to plan not only pre-disaster evacuation but also post-disaster rescue actions. Numerical experiments and an empirical case study for three coastal cities in the State of Mississippi (Biloxi, Gulfport, and D’lberville) are conducted to study the performance of the proposed models and to draw managerial insights.  相似文献   

4.
The main objective of this paper is to establish the procedures necessary to the development of a model for the environmental risk assessment of accidents involving Transporting Hazardous Materials by Road (THMR). Quantifying the environmental risk is useful in identifying areas with a high risk of accidents, which can be later discarded as main routes; orienting efficient emergency response operations; and assessing policies aimed at reducing these risks. Taking this into consideration, this study endeavors to identify the methodological aspects make possible the assessment of the impacts that arise from accidents involving the transportation of hazardous materials by road and to implement such methodological aspects in a Geographic Information System (GIS).  相似文献   

5.
The paper develops a methodology for assessing the relative risk levels in moving hazardous materials by various transport modes. Transportation Risk ANalysis tool for hazardous Substances (TRANS) divides routes into smaller segments using multi-criteria analysis and likelihood scores of accidents in which dangerous cargoes are involved possibly causing fatalities. The consequences of accident scenarios are calculated in terms of the number of people within 1% of the lethal distance from the accident centre. This provides a user-friendly, semi-quantitative risk analysis tool. The generic method allows for comparing the risk levels of the segments of routes used in the transportation of hazardous goods.  相似文献   

6.
道路疏散应急系统作为承载应急救援、疏散活动的关键性基础设施,发挥着举足轻重的作用。道路应急疏散管理日渐成为灾害管理、应急响应过程中的重要举措。本文针对道路应急疏散的理论、方法和实践问题进行研究,提出道路疏散应急预案,明确应急救援的范围和体系,建立各个系统之间的联动机制,以便做出实时的紧急响应,减小事故的危害。  相似文献   

7.
Unmanned Aerial Vehicles (UAVs) are attracting significant interest for delivery service of small packages in urban areas. The limited flight range of electric drones powered by batteries or fuel cells requires refueling or recharging stations for extending coverage to a wider area. To develop such service, optimization methods are needed for designing a network of station locations and delivery routes. Unlike ground-transportation modes, however, UAVs do not follow a fixed network but rather can fly directly through continuous space. But, paths must avoid barriers and other obstacles. In this paper, we propose a new location model to support spatially configuring a system of recharging stations for commercial drone delivery service, drawing on literature from planar-space routing, range-restricted flow-refueling location, and maximal coverage location. We present a mixed-integer programming formulation and an efficient heuristic algorithm, along with results for a large case study of Phoenix, AZ to demonstrate the effectiveness and efficiency of the model.  相似文献   

8.
In a no-notice disaster (e.g., nuclear explosion, terrorist attack, or hazardous materials release), an evacuation may start immediately after the disaster strikes. When a no-notice evacuation occurs during the daytime, household members are scattered throughout the regional network, and some family members (e.g., children) may need to be picked up. This household pick-up and gathering behavior was seldom investigated in previous work due to insufficient data; this gap in our understanding about who within families handles child-gathering is addressed here. Three hundred fifteen interviews were conducted in the Chicago metropolitan area to ascertain how respondents planned their response to hypothetical no-notice emergency evacuation orders. This paper presents the influencing factors that affect household pick-up and gathering behavior/expectations and the logistic regression models developed to predict the probability that parents pick up a child in three situations: a normal weekday and two hypothetical emergency scenarios. The results showed that both mothers and fathers were more likely to pick up a child under emergency conditions than they were on a normal weekday. For a normal weekday, increasing the distance between parents and children decreased the probability of parents picking up children; in other words, the farther parents are from their children, the less likely they will pick them up. In an emergency, effects of distance on pick-up behavior were significant for women, but not significant for men; that is, increasing the distance between parents and children decreased the probability that mothers pick up a child, but had a less significant effect on the fathers’ probability. Another significant factor affecting child pick-up behavior/expectations was household income when controlling for distance. The results of this study confirm that parents expect to gather children under emergency conditions, which needs to be accounted for in evacuation planning; failure to do so could cause difficulties in executing the pick-ups, lead to considerable queuing and rerouting, and extend the time citizens are exposed to high levels of risk.  相似文献   

9.
This study seeks to determine risk-based evacuation subzones for stage-based evacuation operations in a region threatened/affected by a disaster so that information-based evacuation strategies can be implemented in real-time for the subzone currently with highest evacuation risk to achieve some system-level performance objectives. Labeled the evacuation risk zone (ERZ), this subzone encompasses the spatial locations containing the population with highest evacuation risk which is a measure based on whether the population at a location can be safely evacuated before the disaster impacts it. The ERZ for a stage is calculated based on the evolving disaster characteristics, traffic demand pattern, and network supply conditions over the region in real-time subject to the resource limitations (personnel, equipment, etc.) of the disaster response operators related to implementing the evacuation strategies. Thereby, the estimated time-dependent lead time to disaster impact at a location and the estimated time-dependent clearance time based on evolving traffic conditions are used to compute evacuation risk. This time-unit measure of evacuation risk enables the ERZ concept to be seamlessly applied to different types of disasters, providing a generalized framework for mass evacuation operations in relation to disaster characteristics. Numerical experiments conducted to analyze the performance of the ERZ-based paradigm highlight its benefits in terms of better adapting to the dynamics of disaster impact and ensuring a certain level of operational performance effectiveness benchmarked against the idealized system optimal traffic pattern for the evacuation operation, while efficiently utilizing available disaster response resources.  相似文献   

10.
Traffic evacuation is a critical task in disaster management. Planning its evacuation in advance requires taking many factors into consideration such as the destination shelter locations and numbers, the number of vehicles to clear, the traffic congestions as well as traffic road configurations. A traffic evacuation simulation tool can provide the emergency managers with the flexibility of exploring various scenarios for identifying more accurate model to plan their evacuation. This paper presents a traffic evacuation simulation system based on integrated multi-level driving-decision models which generate agents’ behavior in a unified framework. In this framework, each agent undergoes a Strategic, Cognitive, Tactical and Operational (SCTO) decision process, in order to make a driving decision. An agent’s actions are determined by a combination, on each process level, of various existing behavior models widely used in different driving simulation models. A wide spectrum of variability in each agent’s decision and driving behaviors, such as in pre-evacuation activities, in choice of route, and in the following or overtaking the car ahead, are represented in the SCTO decision process models to simulate various scenarios. We present the formal model for the agent and the multi-level decision models. A prototype simulation system that reflects the multi-level driving-decision process modeling is developed and implemented. Our SCTO framework is validated by comparing with MATSim tool, and the experimental results of evacuation simulation models are compared with the existing evacuation plan for densely populated Beijing, China in terms of various performance metrics. Our simulation system shows promising results to support emergency managers in designing and evaluating more realistic traffic evacuation plans with multi-level agent’s decision models that reflect different levels of individual variability of handling stress situations. The flexible combination of existing behavior and decision models can help generating the best evacuation plan to manage each crisis with unique characteristics, rather than resorting to a fixed evacuation plan.  相似文献   

11.
The consideration of pollution in routing decisions gives rise to a new routing framework where measures of the environmental implications are traded off with business performance measures. To address this type of routing decisions, we formulate and solve a bi-objective time, load and path-dependent vehicle routing problem with time windows (BTL-VRPTW). The proposed formulation incorporates a travel time model representing realistically time varying traffic conditions. A key feature of the problem under consideration is the need to address simultaneously routing and path finding decisions. To cope with the computational burden arising from this property of the problem we propose a network reduction approach. Computational tests on the effect of the network reduction approach on determining non-dominated solutions are reported. A generic solution framework is proposed to address the BTL-VRPTW. The proposed framework combines any technique that creates capacity-feasible routes with a routing and scheduling method that aims to convert the identified routes to problem solutions. We show that transforming a set of routes to BTL-VRPTW solutions is equivalent to solving a bi-objective time dependent shortest path problem on a specially structured graph. We propose a backward label setting technique to solve the emerging problem that takes advantage of the special structure of the graph. The proposed generic solution framework is implemented by integrating the routing and scheduling method into an Ant Colony System algorithm. The accuracy of the proposed algorithm was assessed on the basis of its capability to determine minimum travel time and fuel consumption solutions. Although the computational results are encouraging, there is ample room for future research in algorithmic advances on addressing the proposed problem.  相似文献   

12.
A basic mathematical model for evacuation problems in urban areas   总被引:1,自引:0,他引:1  
Real life situations like floods, hurricanes or chemical accidents may cause the evacuation of a certain area to rescue the affected population. To enable a fast and a safe evacuation a basic mixed-integer evacuation model has been developed that provides a reorganization of the traffic routing of a certain area for the case of an evacuation. This basic problem of evacuation minimizes the evacuation-time while prohibiting conflicts within intersections. Our evacuation model is a dynamic network flow problem with additional variables for the number and direction of used lanes and with additional complicating constraints.Because of the size of the time-expanded network, the computational effort required by standard software is already very high for tiny instances. To deal with realistic instances we propose a heuristic approach.  相似文献   

13.
Decisions to fund light rail (LRT) have been critiqued as instrumentally irrational. This paper examines whether the seemingly more technical LRT routing decisions are instrumentally rational. To this end, we test whether routing decisions are made to address goals that are rationally derived from the challenges faced by the urban region. On the basis of a review of the literature, two rationales that underlie most of the stated goals are identified: providing service for the most heavily travelled and congested corridors and inducing development, and subsequently demand, in areas perceived to be underdeveloped or distressed and in areas that have deteriorated. In a survey of key respondents from 16 cities, we find that goals are only weakly correlated with the challenges. While most routes provide service on the most heavily demanded corridors, routing decisions are no less driven by a desire to cut pecuniary and transaction costs. For this reason existing rights of way are often preferred. This is explained by the intertwining of routing and funding decisions. The implications of these findings for evaluation techniques of LRT routes are discussed.  相似文献   

14.
Multi-echelon distribution strategy is primarily to alleviate the environmental (e.g., energy consumption and emissions) consequence of logistics operations. Differing from the long-term strategic problems (e.g., the two-echelon vehicle routing problem (2E-VRP), the two-echelon location routing problem (2E-LRP) and the truck and trailer routing problem (TTRP)) that make location decisions in depots or satellites, the paper introduces a short-term tactical problem named the two-echelon time-constrained vehicle routing problem in linehaul-delivery systems (2E-TVRP) considering carbon dioxide (CO2) emissions. The linehaul level and the delivery level are linked through city distribution centers (CDCs). The 2E-TVRP, which takes CO2 emissions per ton-kilometer as the objective, has inter-CDC linehaul on the 1st level and delivery from CDCs to satellites on the 2nd level. The Clarke and Wright savings heuristic algorithm (CW) improved by a local search phase is put forward. The case study shows the applicability of the model to real-life problems. The results suggest that the vehicle scheduling provided by the 2E-TVRP is promising to reduce the CO2 emissions per ton-kilometer of the linehaul-delivery system. Adjusting the central depot location or developing the loaded-semitrailer demand among O-D pairs to eliminate empty-running of tractors will contribute to reduce the CO2 emission factor.  相似文献   

15.
This article describes a simple, rapid method for calculating evacuation time estimates (ETEs) that is compatible with research findings about evacuees’ behavior in hurricanes. This revision of an earlier version of the empirically based large scale evacuation time estimate method (EMBLEM) uses empirical data derived from behavioral surveys and allows local emergency managers to calculate ETEs by specifying four evacuation route system parameters, 16 behavioral parameters, and five evacuation scope/timing parameters. EMBLEM2 is implemented within a menu-driven evacuation management decision support system (EMDSS) that local emergency managers can use to calculate ETEs and conduct sensitivity analyses to examine the effects of plausible variation in the parameters. In addition, they can run EMDSS in real time (less than 10 min of run time) to recalculate ETEs while monitoring an approaching hurricane. The article provides an example using EMDSS to calculate ETEs for San Patricio County Texas and discusses directions for further improvements of the model.  相似文献   

16.
Hazardous materials (hazmat) accidents are rare though the consequences could be disastrous. Given the possibility of low probability – high consequence event, a risk-averse routing hazmat shipment is necessary. We propose a value-at-risk (VaR) approach to route rail hazmat shipments, using the best train configuration, over a given railroad network with limited number of train services such that the transport risk as measured by VaR is minimized. Freight train derailment reports of the Federal Railroad Administration were analyzed to develop expressions that would incorporate characteristics of railroad accidents, and then to estimate the different inputs. The proposed methodology was used to study several problem instances generated using the realistic network of a railroad operator, and to demonstrate that it is possible to develop different routes for shipments depending on the risk preference of the decision maker.  相似文献   

17.
This paper proposes an advanced solution for efficient logistics management in urban areas based on a unified scheme able to address both static and dynamic decision making at a company and network level. The proposed solution generates the most efficient urban distribution plan utilizing an evolutionary metaheuristic approach and a backpressure framework that provide competitive scheduling and routing decisions. An empirical study based on real data is conducted assessing the performance of the proposed advanced solution and the reported results of the evaluation experiments demonstrate its generality and robustness.  相似文献   

18.
This paper adds partial household evacuation to the traditional binary evacuate/stay decision. Based on data from a survey of Jacksonville, FL residents after Hurricane Matthew, multinomial (MNL) and random parameter MNL models were developed to determine the influential factors and whether some variables’ effects are more nuanced than prior literature suggests. The random parameter model was preferred to the fixed parameters model. Variables significant in this model included injury concern, certainty about hurricane impact location, age, marital status, family cohesion, and living in mobile or detached homes. Greater injury concern results in lower likelihood of none of the household evacuating and greater likelihood of partial evacuation, but lower likelihood of full household evacuation. Similarly, greater certainty about hurricane impact increased the probability of partial household evacuation but decreased the probability of full evacuation. Respondent age had heterogenous effects; for 85.54% of respondents, additional years of age increased the likelihood of the household staying. Married households had a higher likelihood of staying or evacuating together. Similarly, greater family cohesion was associated with the household remaining together. Living in mobile homes decreased the likelihood that all of the household stays or evacuates and increased the probability of partial household evacuation. Living in a single-family detached home was associated with lower likelihood of all of the household staying or evacuating and a greater likelihood of a partial household evacuation. These findings can inform strategies that influence full or partial household evacuations, material requirements based on these decisions, and ways to reduce family risk.  相似文献   

19.
There is substantial evidence to indicate that route choice in urban areas is complex cognitive process, conducted under uncertainty and formed on partial perspectives. Yet, conventional route choice models continue make simplistic assumptions around the nature of human cognitive ability, memory and preference. In this paper, a novel framework for route choice in urban areas is introduced, aiming to more accurately reflect the uncertain, bounded nature of route choice decision making. Two main advances are introduced. The first involves the definition of a hierarchical model of space representing the relationship between urban features and human cognition, combining findings from both the extensive previous literature on spatial cognition and a large route choice dataset. The second advance involves the development of heuristic rules for route choice decisions, building upon the hierarchical model of urban space. The heuristics describe the process by which quick, ‘good enough’ decisions are made when individuals are faced with uncertainty. This element of the model is once more constructed and parameterised according to findings from prior research and the trends identified within a large routing dataset. The paper outlines the implementation of the framework within a real-world context, validating the results against observed behaviours. Conclusions are offered as to the extension and improvement of this approach, outlining its potential as an alternative to other route choice modelling frameworks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号