首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
刘纯  程高  杨慧  麻伟 《公路》2023,(4):120-127
为研究简支钢板组合梁桥动力冲击系数,根据我国钢板组合梁桥实际应用情况,设计了150座不同参数组合的简支钢板组合梁桥,结合中国规范五轴车辆模型,建立车辆—桥梁耦合动力分析系统,通过数值模拟对冲击系数进行求解,分析不同参数对冲击系数的影响规律,最后提出基于跨径的冲击系数计算表达式,并与境内外规范进行对比分析。结果表明:简支钢板组合梁桥跨径、主梁数量、斜交角、车道数量、车辆车速均对冲击系数具有显著的影响,在60 m以下范围内冲击系数随跨径增大逐渐增大,超过60 m时,随跨径增大,冲击系数逐渐减小;主梁数量越多,冲击系数越小;斜交角超过45°时,应关注扭转导致的冲击系数放大作用;车道数量对冲击系数影响较小,冲击系数随车速的增加线性增长。可见,本研究计算的钢板组合梁桥冲击系数取值及其随跨径的变化规律与境内外规范相比存在明显差异,我国规范规定的冲击系数取值在40 m以下跨径中偏保守,当跨径超过40 m时,取值偏不利。研究结果可为简支钢板组合梁桥冲击系数取值提供参考。  相似文献   

2.
为了探究结构参数变化对钢-混凝土组合梁桥受力性能的影响,确定结构参数的合理取值,以某4×35 m的双工字钢-混凝土组合连续梁桥为背景,采用ANSYS软件建立全桥精细化有限元模型,分析翼缘板宽厚比、腹板高厚比、腹板竖向加劲肋厚度和间距及横梁间距和竖向位置的变化对桥梁总体受力性能的影响,提出各结构参数的合理取值建议。结果表明:组合梁桥的弹性稳定系数随翼缘板宽厚比增大和腹板高厚比的增大逐渐减小;翼缘板宽厚比小于12、腹板高厚比取100~120时,稳定性能得到保障;腹板竖向加劲肋厚度增大,组合梁桥的弹性稳定系数稍有增大,从施工及焊接角度考虑加劲肋厚度建议取12~16 mm;加劲肋间距越小,组合梁桥的极限承载力越高,间距取2.5 m左右可满足稳定性要求;横梁间距取8~10 m、布置在横断面稍微偏下的位置时,对钢梁受力较为有利。  相似文献   

3.
结合常用中小跨径钢板组合梁的构造,利用有限元软件计算分析横向联结系的数量、截面形式对钢板组合梁桥受力性能的影响。计算结果表明:对于跨中截面,跨间小横梁数量越多,则混凝土板顶面纵桥向压应力越大、底面纵桥向压应力越小、混凝土板顶面横桥向拉应力越小、底面横桥向拉应力越大;而跨间小横梁数量对中支点处混凝土板和所有钢梁的受力性能几乎无影响。跨间布置奇数道小横梁比布置偶数道小横梁对结构受力更有利,建议中小跨径钢板组合梁跨间布置不少于3道小横梁;小横梁数量对主梁挠度影响较小,其影响程度远远小于混凝土板厚度改变对主梁挠度的影响。  相似文献   

4.
近年来,随着我国组合结构桥梁的迅猛发展,中小跨径钢板组合梁得到广泛应用。针对30~40 m的中小跨径四主梁钢板组合梁,通过有限元方法建立全桥三维空间模型进行稳定分析,研究横向联结系的设计参数(数量、截面尺寸和竖向位置)对于中小跨径钢板组合梁稳定性能的影响。计算分析表明,当钢主梁发生整体的弯扭失稳时,增加横向联结系数量、增大横向联结系构件截面、将横向联结系靠近受压翼缘布置等措施能够提高钢主梁稳定性;而当主梁受压翼缘受局部稳定控制时,改变横向联结系的设计参数对于钢主梁稳定性影响较小。  相似文献   

5.
为了详细阐述简支组合梁桥的设计流程,以某座跨径为40 m的简支组合梁桥为例,利用Midas有限元分析软件对该桥的施工过程及使用过程进行模拟.主要对比分析模型建立精度及施工方案对结构受力的影响,以及材料优化对结构轻型化设计的益处.结果表明:钢梁底板加劲肋对底板受力情况有较大的影响.在建立模型时,建议对加劲肋进行模拟.设置临时支撑能有效改善钢梁的受力,但同时会大幅度地增大混凝土桥面板的压应力.合适的施工方案和优化材料的结合能使结构设计轻型化,有效地减少工程材料用量.  相似文献   

6.
为探究连续曲线双工字钢-混凝土组合梁桥在弯扭组合作用下的力学性能,设计了一座曲线半径为200 m,跨径布置为17.5 m+17.5 m的连续曲线组合梁桥模型,并进行了静载试验,包括两点偏心弹性加载及四点对称破坏加载。试验测试了模型桥荷载-挠度关系曲线,控制截面钢梁、桥面板及钢筋应变分布,记录了模型桥的破坏过程及特征荷载,混凝土桥面板裂缝分布及裂缝宽度。结果表明:对称荷载作用下,曲率效应使外弧侧结构受力更不利;加载截面、中支点截面钢梁翼缘屈服后,第2跨加载点外弧钢梁腹板发生剪切屈曲,截面塑性转动能力受到钢板局部屈曲的限制;中支点桥面板裂缝分布范围超过计算跨径±20%;模型桥第2跨外梁破坏后,其他结构仍能继续承载,内弧侧结构延性指标远小于外弧侧,模型桥横桥向具有冗余性;竖向荷载作用下,模型桥弹性阶段截面正应力主要由弯曲正应力和约束扭转翘曲正应力组成,此外,钢梁下翼缘存在额外的横向弯曲正应力;最后,给出了钢梁下翼缘横向弯矩简化计算方法,并基于Vlasov薄壁结构理论,提出了双工字钢-混组合梁桥约束扭转截面特性计算方法。  相似文献   

7.
本文以城市高架简支预制槽形钢混组合梁桥为研究对象,选取了桥面板与钢梁之间的滑移效应、跨间横梁的个数、桥面板板厚、桥梁宽度和跨径、以及主梁刚度等参数,应用有限元方法,全面分析了各因素对该桥型荷载最不利横向分布系数的影响。研究表明:组合梁的界面滑移效应对荷载最不利横向分布系数影响在5%以内;保证跨径一定,组合梁跨间横梁的个数对宽桥荷载最不利横向分布系数的影响在8%以内,对窄桥则更小;桥面板板厚的增加会使荷载横向分布更均匀,宽跨比越大的桥,板厚对最不利横向分布系数的影响越大;保证桥宽不变,随着跨径的增大,荷载最不利横向分布系数逐渐减小,主梁数相同时,随着宽跨比的增大,最不利横向分布系数逐渐增大。梁高的增加会使最不利横向分布系数更大,但最大增幅保持在5%以内。在今后的标准化设计中,可取某几种最不利参数将其余参数进行包络,从而节约设计成本、提高设计效率。  相似文献   

8.
某跨江大桥主航道桥为单孔跨径188m,全长608m的大跨度组合梁-钢拱组合体系拱桥。根据桥梁方案特点及建桥条件,该桥采用钢拱、钢梁在岸上先期组拼为一体,利用顶推设备进行整体顶推的施工方法。为了保证顶推过程中钢拱、钢梁受力满足规范要求,需在钢拱、钢梁之间设置多个临时撑杆。该文着重介绍拱梁之间临时撑杆的方案选择和受力分析要点。  相似文献   

9.
跨京广铁路信阳编组场大桥为(150+150) m独塔曲线钢箱梁斜拉桥,塔高86 m,向曲线外倾斜3°。该桥采用不平衡水平转体法施工,转体重量达19 600 t,转体角度74°。针对斜塔施工过程中结构重心外移引起的倾覆稳定问题,以及斜塔曲梁斜拉索初张拉钢梁脱架难的问题,采用MIDAS Civil软件建立桥梁施工过程有限元模型,进行施工控制研究。施工过程中,采用砂筒+配重措施,以提高结构抗倾覆系数至1.303,保证桥塔施工过程的稳定性;提前拆除塔根处钢梁支架,减小斜拉索初张力,保证了钢梁安全顺利脱架,同时避免了钢梁扭转;运用桥梁转体智能监测控制技术实时监测转体过程,转速控制为0.65 (°)/min,转体过程平顺稳定,成桥后监测的主梁线形与斜拉索索力均满足规范要求。  相似文献   

10.
缅甸钦敦江大桥钢梁架设   总被引:1,自引:0,他引:1  
滕小平 《公路》2001,(3):17-21
缅甸钦敦江大桥为公铁两用的栓焊下承式钢桁梁桥,主跨112m。中国路桥公司负责该桥主桥上部结构设计、施工设计、上部结构施工指导和监理;缅方负责下部构造设计和上、下部结构施工,施工中当钢梁悬臂拼装80m时,利用吊索架挂索张拉,对钢梁施以一定的预拉索力,以减少钢梁控制部位杆件内力并利用了温差法成功地实现了钢梁纵移,全桥于1999年9月建成通车。  相似文献   

11.
大跨径钢箱提篮拱桥空间稳定性分析   总被引:2,自引:2,他引:0  
随着提篮拱桥跨径的增加,其空间稳定性问题愈发突出,为对大跨径提篮拱桥稳定性以及各稳定性影响因素进行分析,可采用线性屈曲和非线性屈曲2种方法。重庆朝阳复建桥为主跨274 m的中承式钢箱提篮拱桥,通过建立空间有限元模型对结构线弹性稳定及几何非线性稳定进行分析表明:考虑几何非线性因素后结构的1阶稳定系数显著减小,几何非线性对结构稳定性影响显著。对影响结构整体稳定性的因素进行计算分析表明:拱肋内倾角变化对稳定性影响较大,提篮拱内倾角增大,结构的1阶稳定系数增加,但过大的内倾角将导致拱肋扭转失稳;随着矢跨比(宽跨比)的增加,结构的1阶稳定系数增大(减小);横撑、吊杆布置形式对结构稳定性影响较小。  相似文献   

12.
宁德市人行悬索桥计算跨径为311.5 m,采用斜拉索辅助桥面主缆受力结构体系。斜拉索主塔纵桥向间距191 m,横桥向采用外圆内方造型。桥面系通过纵向主缆与纵、横梁联合受力,纵、横梁固定在主缆上。人行道板采用防腐木板。桥梁施工顺序为锚碇及主塔基础及塔身、主缆、纵横梁、风缆、桥面防腐木及栏杆,然后斜拉索施工。考虑施工过程,采用桥梁专用有限元软件Midas/Civil 2019,构建了全桥计算分析模型。计算结果表明:桥梁结构整体刚度大,各构件受力合理,应力与活载下变形均满足相关规范规程要求。  相似文献   

13.
宁德市人行悬索桥计算跨径为311.5 m,采用斜拉索辅助桥面主缆受力结构体系。斜拉索主塔纵桥向间距191 m,横桥向采用外圆内方造型。桥面系通过纵向主缆与纵、横梁联合受力,纵、横梁固定在主缆上。人行道板采用防腐木板。桥梁施工顺序为锚碇及主塔基础及塔身、主缆、纵横梁、风缆、桥面防腐木及栏杆,然后斜拉索施工。考虑施工过程,采用桥梁专用有限元软件Midas/Civil 2019,构建了全桥计算分析模型。计算结果表明:桥梁结构整体刚度大,各构件受力合理,应力与活载下变形均满足相关规范规程要求。  相似文献   

14.
顾超 《世界桥梁》2012,(1):14-18
越南富美桥为一座(162.5+380+162.5)m的混凝土斜拉桥,主梁为现浇钢筋混凝土π形梁,梁高较小(2.001~2.305m),索距较大(10m),横梁和梁上拉索锚头预制,边主梁和桥面板现浇,主梁与锚墩固结。采用1套挂篮进行主梁施工,建造工期约30个月。介绍该桥设计及审查所采用的规范、斜拉桥的结构布置及审查过程中的计算分析和验算细节,包括:有限元模型及整体分析,非线性施工过程分析,地震反应分析,船撞分析,拉索破坏、疲劳及换索分析,空气动力分析,活载效应以及环境因素。  相似文献   

15.
钢板组合梁应用广泛,结构体系多样,以三车道16.25 m桥宽、40 m跨径为前提,分别按照法国、日本、美国的常用主梁间距和结构体系进行方案设计,并横向比较各体系的异同。分别对多主梁、少主梁进行计算分析,研究影响结构受力特性的因素,并列出梁高对主梁应力及位移的影响,得出随着梁高增加,钢主梁纵向应力、竖向位移均呈现显著的线性减小趋势。  相似文献   

16.
阿联酋阿布扎比谢赫·扎耶德桥是前往阿布扎比岛的主要通道,主桥长840 m,主拱跨径234 m,2幅主梁采用预应力混凝土箱形结构,用大截面横梁连接,由粗大吊杆支承;3组不对称拱(寓指流动的沙丘)和墩身组成长600 m的整体连续结构.4个水中主墩承台采用双壁钢板桩围堰法施工;墩身采用传统的支架法和翻模法施工;主梁采用重型临时支架系统分2个阶段现浇;钢构件运输到施工现场后,通过旋转架从侧卧位置旋转为立式位置,采用1台新式大型提升站(顶部带有旋转转盘)提升.该桥施工用的临时钢结构总计超过20 000 t,临时工程中混凝土的用量达80 kg/m3,工程造价约3亿美元,于2010年11月22日通车.  相似文献   

17.
伊拉克阿玛拉桥为(71.5+71.5)m独塔部分斜拉桥,桥面全宽20m,设双向4车道及人行道,战时可供军用特殊车辆通行。桥塔采用钢结构,由2个相同的椭圆形门式塔圈纵向并列组成,纵向通过钢管撑连接形成整体。主梁由纵、横梁体系的钢梁通过剪力钉与钢筋混凝土桥面板相连接,形成钢-混凝土结合梁。斜拉索采用空间竖琴形双索面布置的PES 7-55镀锌高强钢丝拉索。根据桥梁结构特点以及桥址区建桥条件,采用了支架法施工主梁、塔梁同步架设的方案施工。该桥按照英国标准进行设计,利用空间有限元软件对桥梁进行结构分析,结果表明桥梁结构的刚度、强度、稳定及疲劳性能均满足规范要求。  相似文献   

18.
川南城际铁路临港公铁两用长江大桥主桥为主跨522 m双塔双索面钢箱梁斜拉桥,桥塔为钻石形钢筋混凝土结构,塔高250.8 m,设中、下横梁各1道及上横梁2道。桥塔采用液压爬模施工,其中下塔柱与下横梁采用同步施工;中、上塔柱与中、上横梁及连接板采用异步施工。在中、上塔柱施工时,中、上塔柱间设置6道主动横撑,解决了塔柱、横梁异步施工时内倾塔柱因自由长度过长导致其根部受力较大的问题,避免了开裂;中横梁采用附壁支架施工,设计简洁且耗材少,整体安装快速便捷,承载性能好;连接板采用无水平推力弧形拱架施工,解决了跨度大、承载力要求高的问题;风洞与上横梁采用落地式组合支架施工,既解决了狭小空间内部支撑构件的安拆问题,又满足承载力强、稳定性高、风险小的要求。  相似文献   

19.
曹妃甸1号桥的主桥为独塔单索面钢箱叠合梁斜拉桥,主桥跨径为138m+138m.介绍了该斜拉桥钢梁的现场施工特点,制作、安装以及所采用的整体落架施工技术和工艺.叠合梁拼装支架在276m主跨范围内全跨布置,就位的成品钢梁环焊连接,现场浇筑桥面板达到强度后,二次张拉对应斜拉索,待施工支架拆除后形成成桥线形.  相似文献   

20.
郑斐  郭琦  张岗 《华东公路》2007,(6):33-36
大跨径拱桥采用有支架现浇施工方案时,支架自身的稳定性是工程建设的关键问题。为验证大跨径拱桥支架现浇施工的可行性,该文通过一工程实例,以实际中心压杆的弹塑性弯曲稳定理论和杆件系统弹性稳定的有限元理论对该桥两种施工方案的支架稳定性进行了验算分析。计算结果表明,支架方案合理可行,支架各部分受力满足规范要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号