首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 679 毫秒
1.
列车由隧道驶上桥梁时会承受突变的风荷载,列车的响应发生突变,导致列车的行车安全受到威胁. 以某客运专线桥隧过渡段为研究背景,通过计算流体动力学 (CFD) 数值模拟和车桥耦合振动分析,计算了CRH3型列车通过桥隧过渡段时受到的气动力及车辆响应;对比分析了头车、中间车及尾车的气动力及列车响应,研究了大风攻角对列车气动力及行车响应的影响,探讨了最不利的安全指标. 研究结果表明:越靠近车头的车体,气动力突变与列车响应越大;相比0° 攻角,正风攻角对行车相对有利,+7° 的风攻角下列车受到的气动阻力和力矩减小了约10%;负风攻角会增大列车的气动力突变效应和行车响应,?7° 风攻角下列车受到的气动阻力和力矩增加了约10%;风速在22.5 m/s以下时,CRH3列车能够以200 km/h的车速安全通过桥隧过渡段;20 m/s风速时,车速在325 km/h以下时列车能够安全通过桥隧过渡段;随着车速与风速的增加,轮轴横向力是首先超限的安全性指标.   相似文献   

2.
为了设置合理的过渡段长度,最大限度地减小路基与隧道之间变形差对行车安全性和舒适性的影响,基于有限元方法和车辆-轨道垂向耦合动力学理论,建立了列车-轨道-路隧过渡段垂向耦合动力分析模型.以钢轨挠度变化率、车体加速度和轮轨力等作为评价指标,对路隧过渡段动力特性进行分析,提出了路基与隧道内同时设置过渡段时,减振橡胶垫层的刚度建议值和布置方式,以及仅在隧道内设置过渡段时过渡段长度的建议值.研究结果表明:过渡段橡胶垫层的刚度可采用分级过渡的方式,减振橡胶垫层的刚度比不宜超过2;在过渡段,以车体振动加速度为控制指标,从保障行车安全和减小过渡段维修工作量的角度出发,建议隧道内过渡段的设计长度为25~30 m.   相似文献   

3.
考虑桩土相互作用的车-轨-桥系统地震响应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
弄清桩土相互作用对车桥系统地震响应的影响对于研究地震引起的高速铁路桥上列车行车安全问题十分必要. 基于列车-轨道-桥梁耦合振动理论,采用Winkler地基梁模拟群桩基础并通过m法计算弹簧参数,建立了地震作用下的列车-轨道-桥梁-群桩耦合振动模型,并编制了仿真分析程序. 以某(88 + 168 + 88)m预应力混凝土连续刚构桥为例,分别建立了考虑桩土相互作用的群桩基础模型以及作为对比的刚性基础模型和弹性基础模型,通过输入3条典型地震波,计算对比了3种模型的耦合振动响应,研究了桩土相互作用的影响. 结果表明:地震作用下桩土相互作用对桥梁、轨道和列车子系统动力响应的影响横向大于竖向,且对桥梁、轨道子系统动力响应的影响大于列车子系统;对于本文的计算条件,不考虑桩土相互作用会使桥梁、轨道和列车子系统的动力响应偏小,其中列车的脱轨系数、轮重减载率和轮轴横向力平均值分别偏小5.8%、8.6%和9.0%;桩土相互作用对列车行车安全性指标的影响不会随车速的变化而变化. 本文的研究成果可为震区高速铁路桥梁的抗震设计提供参考.   相似文献   

4.
地震作用下高速列车-线路-桥梁系统动力响应   总被引:4,自引:0,他引:4  
为分析地震对高速列车通过桥梁时行车安全性的影响,基于高速铁路列车-线路-桥梁动力相互作用理论,建立了考虑地震输入的高速列车-线路-桥梁耦合动力学模型.以跨度32 m的简支箱梁桥和双块式无砟轨道为研究对象,对地震作用下高速列车通过桥梁时系统的动力响应进行了数值计算.结果表明:地震对高速列车-线路-桥梁系统动力响应的影响明显,对桥梁横向振动响应的影响大于对竖向振动响应的影响;地震会降低高速列车通过桥梁时的行车安全性和运行平稳性———在水平1.0 m/s2,竖向0.5 m/s2的规格化El Centro地震波作用下,当列车运行速度超过250 km/h时,轮重减载率超过了安全限值;当列车运行速度达300 km/h时,脱轨系数超过了安全限值.因此,评判地震作用下高速列车通过桥梁时的行车安全性,应考虑行车速度的影响.  相似文献   

5.
高速铁路无碴轨道桩板结构路基模型试验研究   总被引:6,自引:1,他引:6  
为了研究列车荷载作用下无碴轨道桩板结构路基的动力特性,以遂渝高速铁路为背景,对桩板结构路基进行了动力模型试验,模型几何相似比为1∶12.试验结果表明,激振1万次后,路基动力响应随振动次数的增加几乎不变;加速度响应幅值受加载频率和激振位置影响,并沿深度逐渐衰减;动应力受激振位置影响显著,而受加载频率的影响较小;桩基加深了路基的动力影响范围.  相似文献   

6.
以蒙华铁路王家湾隧道为工程依托,采用数值模拟的方式,研究不同行车速度下隧道基底围岩的动力响应规律,进一步分析基底围岩经水泥挤密桩加固后的动力响应情况以及桩间距的改变对加固效果的影响。研究结果表明:隧道基底围岩的加速度峰值和动应力峰值都随着行车速度的增加而增加,且加速度峰值受速度变化影响较大;隧道基底围岩的加速度峰值、动应力峰值都随着离基底距离的增加而减小,加速度峰值衰减速率逐渐变小,而动应力峰值衰减速率逐渐变大,其中,基底以下0~3m为速度强影响区,3~5m为速度弱影响区;水泥挤密桩加固使基底围岩最大加速度峰值减小,动应力峰值增大;随着桩间距的增大,较浅处围岩加速度峰值减小,较深处围岩加速度峰值增大,而动应力峰值都逐渐增大,且桩中部受影响较大。根据分析,建议在重载铁路隧道加固方案中,桩间距取0.4m左右较为合适。  相似文献   

7.
为探究铁路大跨T形刚构桥车桥耦合振动特性与动力性能,以宜万铁路马水河大桥为工程背景,建立桥梁空间杆系有限元模型以及包含31个自由度的车辆模型,进行车桥耦合振动计算分析.通过动载试验测试桥梁的自振特性,并测试列车以不同速度通过桥跨和以一定速度在特定位置制动时桥跨结构的动应变、动位移以及加速度等动力响应.依据动载试验与车桥耦合振动计算综合分析马水河大桥的动力性能.研究结果表明:车桥耦合振动计算结果与实测结果吻合较好,桥梁结构动力响应满足规范限值,该桥具有良好的横向、竖向刚度与动力性能;实测桥跨结构及墩顶动力系数最大值为1.08,桥梁结构受行车及制动的动力作用不明显;列车的动力响应随车速的提高而增大,但均满足规范限值,具有良好的安全性与平稳性.   相似文献   

8.
为研究软黏土在长期列车振动荷载下的动力响应特征及变形规律,以天津地铁6号线左江道站—梅江风景区站区间为研究背景,采用土体循环移动弹塑性本构模型,选取合理的列车荷载,建立三维有限元模型,揭示隧道周围软黏土的加速度响应和位移响应,并结合实测数据分析隧道周围峰值加速度的衰减规律。研究表明:在隧道径向上平均峰值加速度呈非线性迅速衰减,列车振动对软黏土的影响范围为2.5倍隧道直径;列车振动对隧道周围环境的影响主要以竖向振动为主,地层变形空间分布形式与加速度响应规律一致;列车振动荷载加载初期,土体的变形增速较快,随着时间的增加,振动引起的土层变形趋于稳定。研究成果可为运营期地铁隧道的环境监测和地层变形评价提供有益参考。  相似文献   

9.
针对岩土工程中常用二维模型等效三维模型进行数值计算的方法,对列车运行引起的二维和三维动力响应进行了分析.根据钢轨-扣件-隧道-地基纵向模型得到作用于隧道道床上的振动荷载,基于循环流动本构模型和土-水完全耦合理论,计算了列车平均时速下饱和软土层二维和三维的振动响应规律.研究结果表明:两种模型的地表振动加速度、位移以及隧道周围超孔隙水压力在横截面内规律基本相似但数值相差较大;二维-三维地表加速度比和位移比最大值分别可达9倍和6倍,加速度振级相差可达15 d B;隧道周围的二维-三维超孔压比在1.5~3.5之间,单次振动超孔压累积值可达4.36 k Pa和1.69 k Pa,且在隧道竖轴左右45°及135°位置处超孔压力累积最为明显;振动荷载形式、纵向土层振动、固结速度是造成饱和土软土二维-三维列车振动响应差异的主要原因.  相似文献   

10.
为探讨行波效应对地震作用下高速铁路桥上列车行车安全性的影响,基于列车-轨道-桥梁动力相互作用理论,采用35个自由度的机车车辆模型、板式无砟轨道模型和桥梁有限元模型,通过引入地震多点激励模式,建立了非一致地震激励下的列车-轨道-桥梁耦合振动模型,并编制了相应的仿真分析程序.以跨度32 m的简支梁桥为例,输入El Centro地震波,计算了一致激励和行波激励下车桥系统的动力响应.结果表明:行波效应对耦合系统动力响应幅值的影响很大.当车速为350 km/h、行波速度为300 m/s时的脱轨系数、轮重减载率和轮轨横向力比一致激励分别降低84.1%、19.5%和87.8%.因此,忽略行波效应可能造成对地震时桥上列车行车安全的误判.   相似文献   

11.
列车通过路桥过渡段时的动力作用研究   总被引:24,自引:3,他引:21  
建立了列车与路桥过渡段动力特性分析模型,确定了一套轨道过渡段动力特性的评价指标,分析了由基础沉降差引起的钢轨初始变形以及行车方向、行车速度对轮轨系统动力性能的影响,提出了确定路桥过渡段长度的方法。  相似文献   

12.
结合南京地铁二号线东延线盾构隧道下穿宁芜铁路工程,研究地铁及铁路荷载共同作用下地基土动力响应.利用车辆-轨道耦合模型,计算轮轨垂向力.利用有限单元法分析地铁线路中心线下地基土和国铁路基面弹性变形、加速度随时间的变化规律,以及地基土中动应力分布规律.分析结果表明,在同样的加载条件下,地铁左线和右线地基土弹性变形及加速度随时间变化规律相似,动应力响应较大的区域主要分布在铁路基床表层、拱腰附近和轨枕下方土层.  相似文献   

13.
无碴轨道动力学理论及应用   总被引:2,自引:0,他引:2  
根据车辆-轨道耦合动力学理论,建立了列车与路基上无碴轨道空间耦合动力学模型.模型中将钢轨视为弹性点支承基础上的Bernoulli-Euler梁,将轨道板及混凝土底座视为弹性基础上的弹性薄板.推导了路基上无碴轨道的运动方程.用上述模型及方程分析了遂渝线无碴轨道综合试验段路基上板式轨道及过渡段的动力学性能.结果表明,快速客车、重载以及普通货车通过路基上板式轨道时,轮轨垂向力、轮轨横向力、脱轨系数、轮重减载率、以及CA砂浆和路基面动应力等动力学指标均小于许用值.该无碴(板式和双块式)轨道与有碴轨道过渡段在客运列车作用下钢轨挠度变化率均小于许用值(0.300mm/m),在货物列车作用下略大于许用值.  相似文献   

14.
山西中南部铁路通道将从全国重点文物保护单位红旗渠下穿越,为了评估铁路建成后列车运营行驶时对红旗渠所产生的振动是否满足古建筑结构的容许振动标准,采用Universal Mechanism软件建立列车-轨道三维动力模型,求得行驶列车作用于轨道上的轮轨作用力,将轮轨力作用于轨道-隧道-山体-红旗渠结构有限元模型上,计算出红旗...  相似文献   

15.
利用大型有限元商业软件ABAQUS建立了车辆-齿轨铁路导入装置耦合动力学有限元模型;仿真了齿轨车辆通过齿轨铁路导入装置的过程,分析了车辆与齿轨铁路导入装置的动态相互作用;考虑不同参数的影响,研究了齿轨铁路导入装置振动响应、结构应力、动态接触力等动态特性响应规律.研究结果表明:随着支撑弹簧预紧力的增大,齿轮转速能更快达到...  相似文献   

16.
为了研究高速铁路高架段车致地面振动的传播和衰减规律,以津秦客专线32m简支梁桥区段为工程背景,实测高速列车以速度250~385km/h通过时的三向地面振动响应,并对实测数据进行时域和频域分析。研究结果表明:近场测点的加速度时程呈现出明显的列车周期性加载现象,轴距及前后车相邻转向架间距的激励频率起主要作用;地面各测点在顺桥向、横桥向和垂向3个方向上的振动优势频率范围为25~80Hz;随着距离的增加,垂向地面振动在优势频段显著衰减,而顺桥向和横桥向地面振动在1~80Hz频段内均明显衰减;各测点在各测试车速下,垂向地面振动比顺桥向和横桥向大,而同一测点在顺桥向和横桥向的地面振动加速度级最多相差2dB;顺桥向和横桥向地面振动在距振源约30m处出现放大现象;车速为250~320km/h时,近场总体振动加速度级随车速增加而增大约6dB,但车速为330~385km/h时的各测点总体振动加速度级相差不超过2dB。   相似文献   

17.
在既有重载铁路中,路基、桥梁与涵洞等构筑物连接的路桥过渡段是线路的薄弱环节,对其进行检测,评估路基承载力是保证线路平顺度和列车安全、平稳运行的关键.采用地基系数K30试验、轻型动力触探试验和室内试验对加固后的朔黄铁路第170号桥路桥过渡段质量进行了检测.试验结果表明:①地基系数K30能够直观地表征路基刚度及承载能力,加固后朔黄铁路170号桥路桥过渡段不同位置处的地基系数K30值提高15%~40%左右;②地基系数K30和轻型动力触探试验结果N10有显著的线性关系,压实系数与地基系数K30不存在相关性;③既有重载铁路路桥过渡段路基质量检测应进行大量的轻型动力触探试验,再辅以地基系数K30试验进行校核,对提高检测的工作效率、降低检测成本、减少检测工作对既有线运营的干扰有重要的意义.  相似文献   

18.
武康二线新刘家沟隧道起讫里程为DzK123+902~DzK124+772,全长870m,位于半径1600m的曲线上,隧道进口右邻既有线,DzK123+902~DzK124+020段距既有花果隧道较近,最小线间距11m,新旧线衬砌背最近距离为4.0m。进口紧接新建千字沟中桥安康端桥台,正下方为316国道,地势陡峭,自然坡度大,处于公路、铁路立体交叉的咽喉部位。由于隧道地理位置特殊,地质复杂,技术含量高,施工难度较大。尤其是爆破施工很可能会影响到既有线结构稳定、运营安全以及316国道行车安全,施工安全形势尤为严峻。  相似文献   

19.
高速铁路隧道缓冲结构的气动作用分析   总被引:1,自引:0,他引:1  
为了减轻高速列车进出隧道时引起的洞口压力波效应,常在隧道入口加建缓冲结构.采用计算流体力学数值分析的方法,仿真计算了高速铁路隧道入口缓冲结构参数对列车以350 km/h进入隧道时的气动作用,分析了过渡段长度、缓冲段长度、缓冲结构开孔率、缓冲结构入口形式对隧道口内气体压力的影响和缓冲结构对隧道内会车压力波的影响.计算结果表明:过渡段长度和缓冲结构入口形式对隧道内气动影响很小,其他参数一定时缓冲段长度存在一最优值;缓冲结构上开孔有助于减小气体压力升高率,缓冲结构的存在有助于降低隧道内会车压力波峰值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号