首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
水底隧道复合式衬砌水压力影响因素分析   总被引:6,自引:5,他引:1  
富水量较大的水底隧道,隧道防排水系统对于控制隧道涌水量和衬砌外水压力十分重要。采用数值计算方法,研究固定水头下水底隧道不同注浆参数、衬砌渗透系数及隧道控制排水量对衬砌水荷载的影响,并与轴对称解析解结果进行对比验证。研究结论:(1)渗透系数增加和注浆圈厚度减小都致使衬砌外水压力的增加;(2)初衬渗透性的变化对初衬外水压力的影响十分显著;(3)数值解与解析解的结果相差不大,非圆形隧道截面可利用等效半径求解衬砌外水压力和隧道涌水量的解析解,并用于隧道防排水的初步设计;(4)隧道注浆圈参数和初衬渗透系数一定时,增大控制排水量有利于减小二衬背后外水压力。  相似文献   

2.
赵旭伟 《铁道建筑》2022,(3):119-121,131
隧道穿越富水断层破碎带施工风险较大,常采取超前全断面预注浆进行处理.本文依托皖南一工点通过建立渗流数值模型分析了注浆圈不同厚度、渗透系数下隧道周边地下水渗流规律.结果表明:未支护条件下开挖,渗流达到稳定状态后地下水压力呈漏斗状分布;隧道涌水量随着注浆圈厚度增加而减小,注浆圈厚度宜控制在5~8m;减小注浆圈的渗透系数可有...  相似文献   

3.
隧道允许渗水量对地下水及结构影响较大,为确定其合理值,首先利用反映法将有界含水层用映射原理转化为无界问题,再基于线性系统叠加原理求解控制点水头势函数,进而利用环境限制条件计算渗水量极限值解析解,同时推导初期支护内外壁水头压力表达式,最后基于工程案例对理论公式进行验证并优化设计.研究结果表明:隧道允许渗水量与控制点周围介质渗透系数及水位允许降深的乘积成正比;降低注浆圈与初期支护渗透系数可减少隧道涌水量,但超过一定界限后隧道涌水量对两者渗透系数的敏感性均可忽略;注浆圈半径增大到一定程度后(本实例为6 m),环向盲管工作状态对二次衬砌外壁水压力影响急剧增大,须定期对环向盲管进行检查,避免水压力对防水板及二次衬砌造成较大破坏.  相似文献   

4.
将存在裂隙的岩体视为等效连续介质,建立海底隧道稳定渗流分析计算模型,并对渗流场相关特性进行探讨;结合青岛胶州湾海底隧道工程计算注浆圈对渗流场影响.结果表明:海底隧道防排水应采取“以堵为主,限量排放”的原则;注浆圈堵水效果与其厚度相关,且注浆圈厚度与其渗透系数成正比.但当围岩渗透系数与注浆加固圈渗透系数之比大于100,且注浆圈厚度不小于10 m时,注浆圈渗透系数、注浆圈厚度对隧道涌水量均影响不大;隧道涌水量和控制排水量之差越大,衬砌外水压力越大;为减少涌水量,可以采用注浆圈封堵地下水渗流通道,衬砌外水压力将显著降低.当处于自由排水阶段时,衬砌不承担水压力,隧道涌水量与控制排水量相等.  相似文献   

5.
青岛地铁13号线井冈山路站至嘉年华站区间隧道敷设在近海区域。该区域围岩较为破碎,裂隙水与海水连通,隧道开挖后预测最大单位涌水量达31.2 m3/(m·d),故防水问题十分突出。借鉴类似工程,确定区间隧道初期支护单位渗水量允许值为0.3 m3/(m·d);采用隧道渗水量简化模型计算不同水头高度、围岩渗透系数、注浆圈厚度与渗透性对初期支护渗水量的影响;基于施工空间和效益对注浆圈厚度的限制,确定不同水头高度和围岩渗透性条件下的注浆圈厚度和渗透系数的合理组合;通过现场初期支护渗水量测试,验证了注浆圈参数的合理性。结果表明:Ⅲ、Ⅳ、Ⅴ级强风化—微风化等级岩层中,注浆圈合理厚度分别为3.75~6.00 m、3.5~6.0 m和0.75~2.75 m,合理渗透系数分别为岩层的0.5%~1.2%、1%~2%和2%。  相似文献   

6.
围岩的注浆效果直接影响到海底隧道的施工安全。采用数值计算方法对固定水头的海底隧道在不同注浆圈厚度、注浆圈渗透系数以及排水方式下,隧道的涌水量和衬砌外水压力进行计算与分析。并将数值模拟的结果与轴对称解析解结果进行对比,结果表明:(1)不同的隧道防排水方式对衬砌外压有着明显的影响;(2)注浆圈的径向加固范围对隧道涌水量和衬砌外水压力产生一定的影响,但其效果并不明显;(3)注浆圈的渗透系数对隧道的涌水量和衬砌的外水压力有较大影响。  相似文献   

7.
海底隧道预注浆加固效果检查与评价   总被引:1,自引:0,他引:1  
以青岛胶州湾海底隧道断层F4-4第一循环预注浆为背景,针对海底不良地质段隧道预注浆效果进行研究。为了合理地检查及评价海底隧道预注浆效果,首先采用公式法和数值法对断层F4-4处的3个断面进行隧道开挖涌水量计算;然后通过布置注浆检验孔,对涌水量进行实地测量;最后,分别将无注浆情况下和注浆情况下用公式法、数值法计算涌水量和实测涌水量进行比较。得出:(1)剖面1和剖面3用公式法的计算结果大于数值法的计算结果,剖面2相反;(2)随着注浆圈厚度的增加隧道开挖涌水量减小,当注浆圈厚度大于5 m后,涌水量的变化趋于平缓;(3)在相同注浆圈厚度的情况下,随着注浆圈渗透系数的减小,隧道开挖涌水量也相应的减小,当注浆圈渗透系数小于一定值时,隧道开挖涌水量的减少并不明显;(4)在断层F4-4开始阶段,用3种方法所得涌水量值相近,同时说明本循环注浆达到设计预期目标。  相似文献   

8.
以青岛地铁1号线胶州湾过海隧道为研究背景,选取了影响复合式衬砌外围水压力的9个主要影响因素,在利用Midas有限元数值分析软件的基础上,采用正交试验设计法分析了2种测试水平下这9个因素对水压力折减系数的显著性影响水平。结果表明:影响二次衬砌外围水压力大小的显著性因素为二次衬砌外围半径和围岩渗透系数与二次衬砌渗透系数的比值;影响初期支护外围水压力大小的显著性因素为围岩渗透系数与注浆圈渗透系数的比值、注浆圈厚度、围岩渗透系数与二次衬砌渗透系数的比值及隧道半径。其中,围岩渗透系数与二次衬砌渗透系数的比值对二次衬砌、初期支护的外围水压力均有显著性影响。因此,在海底隧道设计和施工过程中,应重点关注衬砌的渗透性能,注意支护结构的参数设计和选取,以保障海底隧道的顺利开挖及运营安全。  相似文献   

9.
基于流固耦合作用的海底隧道初期支护安全影响因素分析   总被引:1,自引:1,他引:0  
以青岛海底隧道试验段为工程背景,基于流固耦合理论对海底隧道初期支护安全性的影响因素进行分析,结论表明:(1)注浆加固显著改善了洞周土体强度和整体性,塑性区范围得到有效控制;(2)注浆加固优化了支护结构的受力,随着加固圈厚度的增加,洞周位移出现不同程度的衰减,加固圈厚度对减小水压的贡献依次为:拱顶拱腰拱脚仰拱;(3)随着加固圈渗透系数的增大,洞周水压力随之增大;(4)在流固耦合作用下,仰拱处的土压力远大于其他部位;(5)现行支护参数条件下,海底隧道初期支护结构满足安全性要求,现场实测与数值计算基本相符。  相似文献   

10.
基于水力学和弹塑性理论,构建含缓冲层的隧道注浆计算模型,计算隧道支护结构及注浆圈外缘承担的渗水压力及隧道涌水量;研究支护结构、注浆圈及围岩的位移与应力解,利用数值模拟对构建模型的合理性进行验证;以穿越富水断层破碎带的某在建隧道为例,计算并确定其缓冲层厚度。结果表明:增设缓冲层后,支护结构外缘径向应力理论值与模拟值最大误差来自隧道拱顶,为7.3%;涌水量模拟值与理论值较为接近,理论值仅比模拟值小1.4%;随缓冲层厚度增加,支护结构外缘径向应力急剧下降,涌水量缓慢增加,当缓冲层厚度与隧道支护结构外径比值为0.10和0.30时,与无缓冲层时相比,支护结构外缘径向应力分别降低39.63%和118.88%,涌水量分别增加4.70%和14.10%;综合考虑受力与涌水因素,在建隧道缓冲层厚度与支护结构外径比值宜采用0.14。  相似文献   

11.
基于流固耦合理论下穿库区隧道围岩稳定性分析   总被引:1,自引:0,他引:1  
以某下穿库区铁路隧道为依托工程,对比分析有无渗流场作用和不同水深条件下,隧道结构应力变化规律以及围岩变形、塑性区和渗流场的变化特性,同时还考虑隧道加固圈厚度和渗透系数对围岩稳定性的影响。研究结果表明:地下水渗流场对围岩变形影响较大,不仅能引起大范围的库底沉降,而且能增大隧道拱顶和拱腰的位移,并且能够减小仰拱的隆起量以及加剧围岩塑性区的范围;隧道的开挖能够对地下水孔隙水压力的分布形成明显的扰动,并且在两拱脚处渗流速度最大,最大塑性区位于横向临时支撑处;注浆加固圈能够改善围岩的受力,隧道最优注浆圈厚度在5m,并且当渗透系数小于围岩渗透系数的1/50时注浆圈加固效果不再明显。  相似文献   

12.
基于等效周长法研究隧道衬砌水压力荷载及内力   总被引:1,自引:0,他引:1  
为研究方形隧道断面衬砌水压力及内力,利用等效周长替代法,将方形隧道断面转变成圆形隧道断面,并运用轴对称解析法与有限差分FLAC3D分别计算在不同衬砌渗透系数、不同注浆半径和不同衬砌厚度情况下,隧道衬砌水压力、渗透量、内力、偏心距以及安全系数。结果表明:轴对称解析法的渗透量和水压力与有限差分数值计算法的很接近;在不透水情况下,水压力不进行折减;通过控制排水、减小衬砌渗透系数、适当增大围岩注浆或适当增大衬砌厚度可以调节衬砌水压力、偏心距与安全系数;衬砌厚度对边角处安全系数影响大;以设计水荷载为正算,施工监测水压力为反算,在施工过程中,检验并修正水荷载。  相似文献   

13.
基于轴对称解析解,分析了水头高度、衬砌厚度、衬砌渗透性、注浆参数及隧道尺寸等因素对衬砌水压力折减系数的影响。研究结果表明:衬砌与围岩相对渗透性对衬砌水压力折减系数影响最明显,衬砌的渗透性是决定水压力折减系数大小的主要因素。注浆的主要作用就是控制地下水排放流量,水压力"卸载"与否取决于衬砌的渗透性。当衬砌渗透系数足够小时,无论是加大注浆圈厚度,还是降低其渗透系数,都不能起到降低水压力荷载的作用,而当衬砌具有一定透水性时,围岩注浆既能限制地下水排放又能降低衬砌水压力。  相似文献   

14.
假设饱和软土地层中从管片注浆孔进行壁后即时注浆时,浆液直接接触周围土体,形成以注浆孔为中心的半球形浆体,与周围土体发生压滤效应,应用达西定律和弹性理论对球形浆体扩散过程进行理论推导,建立盾构隧道壁后注浆球孔压滤扩散模型。计算分析壁后注浆时隧道周围土体孔隙水压力、有效应力及注浆对管片产生的附加压力。分析结果表明:孔隙水压力随着远离注浆孔而逐渐消散;土体径向有效应力随着远离注浆孔逐渐减小,土体切向有效应力随着远离注浆孔先增大、后逐渐减小;注浆对管片产生的附加压力随着注浆压力的增大而增大。  相似文献   

15.
隧道衬砌水压力荷载及内力研究   总被引:4,自引:4,他引:0  
通过轴对称解析计算和有限元数值计算隧道在不同衬砌渗透系数、不同注浆圈厚度、不同衬砌厚度条件下,衬砌背后的水压力、流量及衬砌内力,分析影响水压力的因素和水压力对衬砌内力的影响,轴对称解析计算和有限元数值计算结果显示水压力和流量十分接近。衬砌不透水时,水压力荷载系数不折减;在控制排水的条件下,调整衬砌渗透系数、注浆半径和衬砌厚度可以改变水压力、流量和衬砌内力。设计时正算水荷载,施工时通过监测流量反算水荷载,对水荷载设计进行检验和修正。  相似文献   

16.
针对已建盾构隧道注浆纠偏加固的问题,设计并进行常重力模型试验,根据纠偏试验的参数建立三维有限元模型。基于有限元模型研究不同注浆压力和注浆位置下隧道变形的发展规律。试验和数值分析结果表明,在隧道的侧下方注浆,会使已建隧道产生水平向位移和竖向抬升,隧道横断面整体受压,局部受拉,水平直径减小,竖向直径增大。随着注浆压力的增大,隧道轴线的水平位移均增大,隧道断面变形程度增加。随着注浆深度的减小,隧道轴线处的水平位移逐渐减小,断面变形程度减小。  相似文献   

17.
分析地质复杂的富水山岭隧道的渗流问题,并基于渗流场流固耦合理论,研究采取注浆加固措施,注浆圈对渗流场的影响。通过理论分析、公式推导、数值分析的方法,并结合工程实践,在分析富水区隧道渗流场的基础上,得到以下几个结论:(1)建立富水区深埋隧道渗流简化模型,推导了渗流场下,隧道涌水量、注浆圈外水压力和衬砌外水压力的推导公式;(2)详细分析了注浆圈对涌水量、衬砌外水压力的影响,涌水量和衬砌外水压力之间的影响,FLAC3d数值分析建立模型,通过数值计算,验证了公式推导的正确,这可对类似工程提供有效的指导和借鉴。  相似文献   

18.
新近系富水弱胶结砂岩地层隧道在施工过程会破坏围岩稳定,进而出现突水和涌沙病害,在砂岩地层进行注浆加固是保障隧道安全的关键。以宁夏中卫某富水砂岩隧道为依托,采用FLAC 3D建立计算模型,探明不同注浆圈厚度对围岩的影响。结果表明:隧道注浆圈厚度为3 m时,围岩累计周边收敛值和拱顶沉降值分别为35.3 cm和30.9 cm,满足设计允许变形值。随着注浆圈厚度的增加,注浆加固效率先增大后减小,但施工难度及工程投资显著增大。综合考虑隧道施工的安全性、简便性及经济性,当围岩含水率为塑限范围及以下时,建议注浆圈厚度为3 m;当围岩含水率为塑限及液限范围之间时,建议注浆圈厚度为4 m。研究结果可为富水砂岩隧道的结构设计和施工提供借鉴。  相似文献   

19.
王威 《铁道建筑》2023,(9):85-90
成都市轨道交通17号线二期工程阳公桥站—龙爪堰站区间隧道上跨既有7号线盾构隧道采用交叉中隔壁法施工。通过数值仿真结合现场监测,分析大断面隧道以小净距上跨施工时既有隧道拱顶隆起与地表沉降的变化规律,并通过分析新建隧道初期支护厚度、钢拱架间距、单次拆撑长度对既有隧道拱顶隆起和地表沉降的影响,对原施工方案进行了优化。结果表明:先行开挖的两个导洞施工对既有隧道拱顶隆起与地表沉降影响明显;既有隧道拱顶隆起与地表沉降随钢拱架间距和单次拆撑长度增大而增大,随初期支护厚度增加而减小。建议新建隧道上跨施工时采用初期支护+二次衬砌+三次衬砌的复合衬砌结构,钢拱架间距取0.4 m,单次拆撑长度取6 m。  相似文献   

20.
针对泽雅隧道穿越F10断层破碎带区围岩破碎、涌水量大等问题,为保证隧道的正常施工,确保后期运营安全,采用ABAQUS数值分析软件建立是否考虑流固耦合的模型,分析不同工况下衬砌的力学特性,计算显示渗流的存在导致隧道衬砌最大总应力增加52.15%,衬砌最大弯矩增加75.4%。鉴于涌水对隧道力学特性影响较大,进而结合隧道实际情况进行涌水处治措施比选,选取泄水孔结合径向注浆的处治措施,并运用数值分析手段对注浆圈厚度和注浆材料渗透系数进行优化,计算结果显示注浆层厚度为5~7 m时,注浆材料渗透系数为围岩的30~50倍时施工效果较好。该分析结果有效指导了施工,可为类似工程提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号