首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《公路》2020,(8)
应用PIARC刹车毂温升模型,研究了高速公路长纵下坡路段按设置缓坡和单一坡度展线两种方式下,货车到达坡底时刹车毂的温度、刹车毂温度达到200℃和260℃时离坡顶的距离3项刹车毂温度特征数据,通过对比分析得到两种展线方式下货车刹车毂升温速度特性、刹车毂升温与车辆总重规律关系和不同货车运行速度条件下刹车毂升温特性。经研究发现,单一坡度方式下货车到达坡底的刹车毂温度相较设置缓坡方式温度更低,其升温速度与下坡距离呈线性相关关系。货车运行速度相等时,随着车辆重量的增加,两种方式下货车到达坡底时刹车毂温差逐渐缩小。重量一致时,随着运行速度的变化,温度差变化不大;同时发现货车刹车毂温度达到200℃和260℃时距坡顶距离的变化规律与纵坡长度有关,得到纵坡坡长15km、20km两个界线点,当坡长小于临界坡长时,采用单一坡度展线比设置缓坡时距离坡顶的距离大,升温速度相对慢,超过临界坡长之后采用设置缓坡展线优于单一坡度展线形式。  相似文献   

2.
公路连续下坡路段的纵断面控制指标研究   总被引:7,自引:2,他引:7  
合理的公路纵坡坡度和坡长是既能克服高差而又能保证工程经济合理的关键性设计指标,其值合理与否,不仅直接影响到行车安全、公路通行能力、运输效益、桥隧等结构物的设置,而且关系到周围环境的破坏程度以及公路建设费用的高低。本文针对我国的主流货运车型与载重吨位,根据连续长大下坡实车满载试验,研究了车辆制动器温度和车辆刹车效能之间的对应关系;提出了山区公路连续下坡路段的平均纵坡和坡长限制要求,以及交通组织和交通管理措施建议。  相似文献   

3.
以横断山区高速公路连续长大下坡路段为例,基于货车温升控制的长大下坡安全评价方法,分析了缓坡、超载及强制停车区对货车安全运营的影响。结果表明,连续长大下坡路段上部设置缓坡对货车制动鼓降温效果不明显,中下部路段缓坡降温效果较好,中下部缓坡越长降温梯度越大;采用均匀纵坡比陡缓相间的纵坡设计更利于行车安全;货车超载将大幅提高全路段制动鼓温度,应严格控制;提出在制动鼓温度超过200℃路段适当位置设置避险车道、增强路面抗滑性能及桥梁护栏防护等级,增设长大下坡余长提醒标志、隧道出入口过渡路段视线诱导及安全警示等措施的建议。  相似文献   

4.
高速公路下坡路段设置缓坡的目的是降低货车行驶的速度,减少制动毂使用,提高连续下坡路段的安全性,现有规范对连续下坡路段缓坡设计指标的规定不够详细,且缺乏不同缓坡最小长度的规定。根据当前货运主导车型的实际情况,选取东风DFL4251A15六轴铰接列车主导车型,对货车在下坡路段的受力状态进行分析,将发动机制动条件下保持货车匀速的下坡坡度作为缓坡临界纵坡,并提出了连续下坡路段货车采取不同制动档位时,不同运行速度对应的缓坡坡度值。根据受力分析结果和制动毂温度降温模型,分别提出了基于货车速度降低特性和制动毂降温特性的缓坡坡长。结果表明:发动机制动时货车保持匀速行驶的缓坡均小于规范规定值;基于货车速度折减特性的缓坡坡长均大于规范中最短坡长的规定值,说明缓坡设计最小坡长应根据缓坡的作用确定。  相似文献   

5.
提出一种实时的车辆长下坡路段车速与制动器温度预警算法.建立长下坡路段的整车纵向力平衡方程和能量方程,分析制动器耗散能量占总能量的比例,研究车速对制动器耗散能量大小的影响,结合制动器吸收能量占制动器耗散能量的比例经验公式,建立制动器温升计算模型;基于试验数据,采用最小二乘法确定模型中的待定系数,比较模型计算的温升与试验数据,最大的均方根误差为12.1℃,对应车速为38 km/h,最小均方根误差为3.7℃,对应车速为50 km/h.安全车速根据安全制动距离和路面纵坡计算得出.预警算法依据车速和制动器温度变化,构造模糊推理系统计算车辆危险指数,综合评价车辆下长坡的危险程度.  相似文献   

6.
本文基于统计分析、总结提炼的方法,提出长下坡路段安全行驶维持速度的概念。在长下坡路段实地调研过程中,通过分析车辆速度变化曲线、测量车辆坡底处制动鼓温度、司机访谈等方法论证长下坡路段安全行驶维持速度的客观存在性,并对长下坡路段维持速度进行定量分析,确定长下坡路段速度建议值。该成果可指导长下坡路段司机的安全运行,极大地提高长下坡路段运营安全性。  相似文献   

7.
北京国道G110拟建线方案连续下坡路段制动失灵风险分析   总被引:1,自引:0,他引:1  
为减少连续下坡路段货车制动失灵的风险,设计人员有意将坡度放缓.连续下坡路段设计展线放坡到何种程度为宜,是公路行业非常关注的问题.笔者以国道G110(北京延庆县城-昌平德胜口)拟建线连续下坡方案为例,采用货车制动毂温升模型定量分析不同坡度、坡长条件下货车制动失灵风险,为设计人员、管理人员在连续下坡纵坡技术指标选择或方案决...  相似文献   

8.
连续长大下坡路段安全问题突出,大型重载货车失控事故频现,在对连续长大下坡路段交通事故数据和道路设计指标调查的基础上,分析了连续长大下坡路段交通事故特性与车辆运行特性,分析了平曲线半径与事故率的关系,运用数理统计方法建立了平均纵坡与事故率的回归模型.分析结果表明,连续长大下坡路段的事故原因是不同车型间速度差过大,部分车头间距不满足80 km/h的停车视距要求,平曲线曲率越大、平均纵坡越大事故率越高.  相似文献   

9.
选取冲突率和排队长度分别作为安全与效率的表征指标,通过对交通事件下车辆换道和最小跟驰安全间隙的分析,建立了长大下坡路段元胞自动机模型规则和仿真方案,得到了冲突率和排队长度随不同限速值的变化规律.根据安全与效率对限速值变化的灵敏度不同,采用加权平均方法计算最优限速值.最后,基于货车制动毂温度预测模型验证限速值对货车的适用范围.研究结果表明:三级服务水平下,平均纵坡为3%,4%,5%的长大下坡的限速值分别为60,60,50 km·h-1;四级服务水平下,平均纵坡为3%,4%,5%的长大下坡的限速值均为50 km·h-1;对于货车要进一步根据极限坡长进行判断,若实际坡长小于极限坡长,则采用仿真限速值,反之采用制动毂温度预测模型计算货车限速值.  相似文献   

10.
本文依托四川雅泸高速公路长大纵坡路段行车安全对策研究项目,开展了针对山区高速公路连续下坡路段驾驶员特性分析,重点阐述了货车驾驶员在连续下坡路段驾驶行为特征问卷调查统计结果,以及车辆在连续下坡路段行驶时驾驶员皮温、脉搏、皮肤导电水平等生理指标的变化趋势,以进一步把握山区高速公路连续下坡路段驾驶员特性。分析结果表明货车驾驶员对于长大下坡的危险意识不够,并且存在相当数量的驾驶员有把下坡误认为是平坡或上坡的经历。在下坡过程中驾驶员生理指标总体呈上升趋势,接近坡底时呈下降趋势,驾驶员在连续下坡路段容易出现紧张情绪。  相似文献   

11.
为建立基于驾驶员人因的山区高速公路长大连续下坡路段线形组合设计方法,通过大型货车自然驾驶试验,研究了驾驶员动态视觉参数在长大连续下坡路段的分布特性及线形组合对驾驶员视觉的影响规律,提出了长大连续下坡路段线形组合设计控制指标和标准.首先通过长大连续下坡路段自然驾驶行为试验,获取了驾驶员眼动参数;其次利用主成分分析法,建立了长大连续下坡路段驾驶员视觉负荷强度模型;最后提出了基于驾驶员视觉负荷强度的长大连续下坡路段纵坡组合及平纵线形组合设计方法.研究结果表明:传统的陡-缓-陡纵坡组合模式设置的缓坡并没有减轻驾驶员行车过程中的视觉负荷,长大连续下坡路段应尽可能采用单一纵坡模式进行展线;相邻坡段坡度差宜控制在1.5%以内,条件受限时也不应超过2.3%;直坡段宜将直坡组合度控制在0.02 m-1以内,弯坡段宜将弯坡组合度控制在0.25m-1以内、条件受限时应控制在0.45 m-1以内.  相似文献   

12.
为了提高高速公路长大下坡路段的安全水平,对3种常用长大下坡路段车辆制动器温升模型分析,充分考虑项目交通特性,分析长大下坡制动性,结合不同载重及运行速度情况下的主制动器温度值预测结果,对评价路段改善前后的安全性进行检查,研究结果表明:在长大下坡路段,当载重为40t、50t,行驶速度为50km/h、60km/h、70km/h和75km/h,温度始终在260℃范围以内,当超载至60t,行驶速度为50km/h、60km/h、70km/h和75km/h,仅在坡底温度超过了260℃,这主要是因下坡距离过长引起;路段改善后,制动器温升有所降低。  相似文献   

13.
基于驾驶员心率增长率的山区高速长大下坡安全评价   总被引:1,自引:0,他引:1  
通过实车试验,探索在长下坡路段行车影响驾驶员的心理因素,建立心率增长率预测模型。并通过实测数据对模型进行有效性验证,确立安全评价标准。研究发现:山区高速公路长下坡路段的坡度、坡长及竖曲线半径对驾驶员心理生理特征有显著影响;建立以累计坡长和曲率为自变量的预测模型,该模型能有效的预测长下坡路段驾驶员的心率增长率;心率增长率低于30%,纵坡路段安全性好,30%~40%安全性较好,高于40%较差。  相似文献   

14.
为使下坡路段货车制动毂温升模型更加符合货车制动毂温度变化规律,提高连续长大下坡路段的安全性,从而更好地指导连续下坡路线纵断面设计,基于连续下坡路段货车制动毂温升机理,通过对长下坡路段主导车型的行车动力学以及热力学分析,对同济大学制动毂温升模型进行修正,在同济模型以三轴载重货车为主导车型的基础上,采用与规范和实际中更符合的东风六轴铰接列车为主导车型,并在发动机辅助制动工况条件下,利用雅西高速3处连续长大下坡路段对该修正后的模型进行了实车验证。结果表明:修正温升模型得到的温升曲线与实测温升曲线更贴合,且修正模型预测的温度与实测温度间的差异随坡长的增加逐步减小,平均差异为16.5℃,低于修正前模型温度与实测温度的平均差异41.5℃。制动毂在3段下坡的预测温度与实测温度间的平均温差分别为21,12.4,21.4℃,均未超过25℃,且温度变化趋势基本一致,说明修正后的温升预测模型精度更高,货车制动毂温升修正模型能更好地预测连续下坡路段的货车制动毂温升状况。  相似文献   

15.
为深入了解公路长大下坡路段货车制动器温度的变化规律,采用铰接列车开展了货车制动器温度检测实车试验。基于实测数据分析了货车制动器温度在下坡过程中的变化规律。研究结果表明:公路连续下坡路段铰接列车的挂车制动器温度远高于牵引车制动器温度;货车不同的行驶条件下,其制动器温度变化趋势存在一定的一致性,具有"同升同降"的特点;公路连续下坡路段的纵坡值大小是影响驾驶员制动行为的关键因素,公路连续下坡路段的纵坡设计中应严格控制陡坡设计,尤其是连续陡坡。  相似文献   

16.
目前重型货车在下长大坡路段持续制动极易引起行车安全问题,在长大下坡路段增设辅助减速车道,在一定程度上可缓解下坡安全问题。通过理论研究行车制动器自动过程中温度变化模型,以制动器热衰退临街温度为阈值确定下坡安全距离,以此分析确定辅助减速车道的位置设置合理区间。首先对发动机制动和电涡流缓速器联合作用下对重型汽车进行下坡能力分析,通过对行车制动器安全温度阈值内的汽车安全下坡距离的研究,确定不同坡度下车辆下坡行驶安全距离,得到下坡安全距离最长坡长为10km左右,基于此确定辅助减速车道的设定位置。  相似文献   

17.
为降低高速公路弯坡组合路段载重车追尾碰撞风险,通过研究不同平纵组合下高速公路弯坡类型,界定弯坡组合路段参数范围,选取具有较强代表性的车型,针对现有最小安全车距模型的缺陷,建立基于载重车制动减速系统且满足驾驶人驾驶行为特性的弯坡组合路段安全车距计算模型并对其参数进行标定;利用载重车仿真软件TruckSim 2016建立弯坡段双车跟驰模型,分析小半径平曲线下载重车爬坡与下坡行车状态时车辆滑移率、行驶速度、车间距等指标,验证该最小安全车距模型的有效性。  相似文献   

18.
我国《公路路线设计规范》对高速公路连续长大纵坡路段的平均纵坡与连续坡长进行了规定,但平均纵坡≥3%的规定在应用时掌握难度较大,针对该问题开展了补充研究。根据对已建高速公路连续长大纵坡路段平均纵坡控制指标采用情况的调查分析,2008年前为了克服高差和降低工程造价,采用最大纵坡+短缓坡段连续拉坡现象较为普遍,最大纵坡为5%时,任意连续3 km平均纵坡较容易超过4.25%,任意连续5 km以上平均纵坡在3.5%左右的情况较多,任意连续10 km平均纵坡超过4.0%的较少,缺少平均纵坡控制指标的规定,造成纵坡设计随意性较大。根据对高速公路平均纵坡与交通事故关系及连续长大纵坡路段交通事故多发位置的调查研究,连续长大纵坡长度在15 km内,交通事故多发位置一般在靠近坡底位置;大于15 km,特别是大于30 km以上,事故多发位置一般在中间的较大纵坡路段;当高速公路区间平均纵坡大于3%以上时,事故率迅速上升,而且随着坡度的增大,事故车辆所行驶的距离越短。结果表明:为了避免连续长大下坡路段出现交通事故多发点,提升交通安全性,除了应控制全路段平均纵坡指标外,还应使纵坡设计接近于平均纵坡度。提出了连续长大纵坡路段中对高差小于300 m的任意区间平均纵坡控制指标。  相似文献   

19.
目前重型货车在下长大坡路段持续制动极易引起行车安全问题。本文提出在长大下坡路段增设辅助减速车道,在一定程度上可缓解下坡压力。因此,引入温升模型,计算车辆下坡失速模型,确定下坡安全距离,以此为缓速车道设计提供依据。首先对发动机制动和电涡流缓速器联合作用下对重型汽车下坡进行研究。其次根据车辆系统动力学,进行汽车下坡能力分析。结合对汽车在制动鼓安全温度阈值内的汽车安全下坡距离的研究,得到下坡安全距离最长坡长为10 km左右,行驶坡度平均范围为3%~7%。基于此确定辅助减速车道的设定位置。  相似文献   

20.
《公路》2004,(8):301-301
云南昆磨高速公路管理公司在元磨高速公路原有两条紧急避险车道基础上 ,准备在沿线增加构建 8条紧急避险车道。紧急避险车道是交通部科研项目 ,在元磨高速公路上做课题实验。元磨高速公路所经路段地质极其复杂 ,纵坡长而陡、弯道多、桥梁隧道多、桥隧里程占总里程的 30 %。在长下坡地段重型车辆会出现刹车失灵 ,针对这一问题 ,交通科研人员进行了探讨 ,设置了紧急避险车道。目前 ,云南省在元磨高速公路途中的小曼萨河、老苍坡路段设置了两条避险车道 ,长度分别为90 m、75m,是专为重型失控车辆设置的专用制动车道。昆磨公司的科研人员准备将 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号