首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A system of two nested models composed by a coarse resolution model of the Mediterranean Sea, an intermediate resolution model of the Provençal Basin and a high resolution model of the Ligurian Sea is coupled with a Kalman-filter based assimilation method. The state vector for the data assimilation is composed by the temperature, salinity and elevation of the three models. The forecast error is estimated by an ensemble run of 200 members by perturbing initial condition and atmospheric forcings. The 50 dominant empirical orthogonal functions (EOF) are taken as the error covariance of the model forecast. This error covariance is assumed to be constant in time. Sea surface temperature (SST) and sea surface height (SSH) are assimilated in this system.  相似文献   

2.
Variations in oxygen conditions below the permanent halocline influence the ecosystem of the Baltic Sea through a number of mechanisms. In this study, we examine the effects of physical forcing on variations in the volume of deep oxygenated water suitable for reproductive success of central Baltic cod. Recent research has identified the importance of inflows of saline and oxygenated North Sea water into the Baltic Sea for the recruitment of Baltic cod. However, other processes have been suggested to modify this reproduction volume including variations in timing and volume of terrestrial runoff, variability of the solubility of oxygen due to variations in sea surface temperature as well as the influence of variations in wind stress. In order to examine the latter three mechanisms, we have performed simulations utilizing the Kiel Baltic Sea model for a period of a weak to moderate inflow of North Sea water into the Baltic, modifying wind stress, freshwater runoff and thermal inputs. The model is started from three-dimensional fields of temperature, salinity and oxygen obtained from a previous model run and forced by realistic atmospheric conditions. Results of this realistic reference run were compared to runs with modified meteorological forcing conditions and river runoff.From these simulations, it is apparent that processes other than major Baltic inflows have the potential to alter the reproduction volume of Baltic cod. Low near-surface air temperatures in the North Sea, the Skagerrak/Kattegat area and in the western Baltic influence the water mass properties (high oxygen solubility). Eastward oriented transports of these well-oxygenated highly saline water masses may have a significant positive impact on the Baltic cod reproduction volume in the Bornholm Basin.Finally, we analysed how large scale and local atmospheric forcing conditions are related to the identified major processes affecting the reproduction volume.  相似文献   

3.
The Neogene marine sedimentary record of the Mediterranean basin is characterised by the regular occurrence of organic-rich layers or sapropels. These sapropels are known to correlate with the precession cycle: their deposition coincides with precession minima. This correlation is thought to be caused to a large extent by a precession-induced increase in the amount of freshwater reaching the Mediterranean Sea. In the literature, various sources of this extra freshwater have been identified and different mechanisms as to how this freshwater flux leads to sapropels have been proposed. In this study we investigate the effects of precession-induced changes in the freshwater budget using a regional ocean general circulation model of the Mediterranean Sea. Emphasis is on the effects at the surface and at intermediate depth. The forcing of the ocean model is adjusted to precession minimum conditions on a parameter by parameter basis. Novel to our approach is that the value of the required adjustments is taken from a global coupled climate model with which experiments have been performed for the present day (close to precession maximum) and precession minimum. With the ocean model we focus on the extent to which extra runoff from either south (specifically: the river Nile) or north and changes in net precipitation over the sea itself lead to a more stable stratification; this we judge by the associated reduction of the sea surface salinity and mixed layer depth in the regions of intermediate and deep water formation. Our main finding is that the effects of (1) increased discharge of the rivers coming from the north, and (2) the increase in net precipitation over the sea itself, are of equal or greater importance than that of increase in Nile discharge.  相似文献   

4.
At great scales of time and space, the dynamics of the Mediterranean Sea, a concentration basin, are mainly linked to its freshwater budget. This budget is subject to evolutions due to man's use of freshwater and to climatic changes affecting precipitation and/or evaporation. Marine dynamics and Atlantic, atmospheric and terrestrial inputs are strong constraints for the geochemical behaviour of the Mediterranean Sea. From measurements made during the last decades in the deep western water, it appeared that temperature, salinity, nutrients and trace metal concentrations were changing with time. In spite of its depth, the Mediterranean Sea looks like a coastal ocean, according to its coast length, watershed and number of inhabitants and to its fast response to climatic and environmental changes. The changes discovered in deep homogeneous waters are signatures of evolutions occurred in the surface layer. But in this layer and particularly in coastal waters, climatic and/or environmental trends may be masked by seasonal and interannual variabilities of not only physical and chemical characteristics but also climatic forcing or anthropic inputs. Analyses of river runoff, atmospheric inputs or climatic trends together with marine evolutions indicate constraints concerning probable changes in the coastal sea and/or in the surface water and processes involved at the interfaces. Moreover, changes observed in coastal or deep-water constitute new constraints for the modelling of the marine circulation and the transfer of matter.  相似文献   

5.
The present study is aimed at determining the confidence limits of design wave parameters derived from numerical modeling—for both extremes and operational conditions—over the Central and Western Mediterranean Sea. The paper presents the methodology and results of an extensive validation activity conducted on a chain of medium-resolution third-generation wave models used for hindcast purposes. The stringent requirements of state-of-the-art coastal and offshore engineering applications over this area make the adoption of medium- or high-resolution hindcast wave and wind models almost mandatory because of the complex coastal geometry, bathymetry, and orography that in turn lead to large variations of the design wave parameters even within small regions. The chains of nested meteorological and wave models used in this hindcast study belong to the ETA and WaveWatch III families, respectively. In this study the wind and wave numerical models have been run over the past 20 years, with increasing resolutions of the wave models from 0.2° up to 0.04°. The results presented herein have 0.1° resolution for both wind and wave models. The wave data obtained are compared with available measurements from 14 wave buoys in coastal zones in the Central and Western Mediterranean Sea.  相似文献   

6.
Multimodel super-ensemble forecasts, which exploit the power of an optimal local combination of individual models usually show superior forecasting skills when compared to individual models because they allow for local correction and/or bias removal. Deterministic approaches to the problem of surface drift are often limited by strong assumptions on the underlying physics. A new approach based on linear and non-linear optimization is proposed, using hyper-ensemble deduced statistics to forecast at short time scale Lagrangian drifts from combined atmospheric and ocean operational models and local observations that were made available during the MREA04 field experiment along the West coast of Portugal. Optimization methods are based on a training/forecast cycle. The performance and the limitations of the hyper-ensembles and the individual models are discussed. Results suggest that our statistical methods reduce the position errors significantly for 12 to 48 h forecasts and hence compete with pure deterministic approaches.  相似文献   

7.
A 1/32° global ocean nowcast/forecast system has been developed by the Naval Research Laboratory at the Stennis Space Center. It started running at the Naval Oceanographic Office in near real-time on 1 Nov. 2003 and has been running daily in real-time since 1 Mar. 2005. It became an operational system on 6 March 2006, replacing the existing 1/16° system which ceased operation on 12 March 2006. Both systems use the NRL Layered Ocean Model (NLOM) with assimilation of sea surface height from satellite altimeters and sea surface temperature from multi-channel satellite infrared radiometers. Real-time and archived results are available online at http://www.ocean.nrlssc.navy.mil/global_nlom. The 1/32° system has improvements over the earlier system that can be grouped into two categories: (1) better resolution and representation of dynamical processes and (2) design modifications. The design modifications are the result of accrued knowledge since the development of the earlier 1/16° system. The improved horizontal resolution of the 1/32° system has significant dynamical benefits which increase the ability of the model to accurately nowcast and skillfully forecast. At the finer resolution, current pathways and their transports become more accurate, the sea surface height (SSH) variability increases and becomes more realistic and even the global ocean circulation experiences some changes (including inter-basin exchange). These improvements make the 1/32° system a better dynamical interpolator of assimilated satellite altimeter track data, using a one-day model forecast as the first guess. The result is quantitatively more accurate nowcasts, as is illustrated by several model-data comparisons. Based on comparisons with ocean color imagery in the northwestern Arabian Sea and the Gulf of Oman, the 1/32° system has even demonstrated the ability to map small eddies, 25–75 km in diameter, with 70% reliability and a median eddy center location error of 22.5 km, a surprising and unanticipated result from assimilation of altimeter track data. For all of the eddies (50% small eddies), the reliability was 80% and the median eddy center location error was 29 km. The 1/32° system also exhibits improved forecast skill in relation to the 1/16° system. This is due to (a) a more accurate initial condition for the forecast and (b) better resolution and representation of critical dynamical processes (such as upper ocean – topographic coupling via mesoscale flow instabilities) which allow the model to more accurately evolve these features in time while running in forecast mode (forecast atmospheric forcing for the first 5 days, then gradually reverting toward climatology for the remainder of the 30-day forecast period). At 1/32° resolution, forecast SSH generally compares better with unassimilated observations and the anomaly correlation of the forecast SSH exceeds that from persistence by a larger amount than found in the 1/16° system.  相似文献   

8.
The quality assessment of a nested model system of the Mediterranean Sea is realised. The model has two zooms in the Provençal Basin and in the Ligurian Sea, realised with a two-way nesting approach. The experiment lasts for nine weeks, and at each week sea surface temperature (SST) and sea level anomaly are assimilated. The quality assessment of the surface temperature is done in a spatio-temporal approach, to take into account the high complexity of the SST distribution. We focus on the multi-scale nature of oceanic processes using two powerful tools for spatio-temporal analysis, wavelets and Empirical Orthogonal Functions (EOFs). We apply two-dimensional wavelets to decompose the high-resolution model and observed SST into different spatial scales. The Ligurian Sea model results are compared to observations at each of those spatial scales, with special attention on how the assimilation affects the model behaviour. We also use EOFs to assess the similarities between the Mediterranean Sea model and the observed SST. The results show that the assimilation mainly affects the model large-scale features, whereas the small scales show little or no improvement and sometimes, even a decrease in their skill. The multiresolution analysis reveals the connection between large- and small-scale errors, and how the choice of the maximum correlation length of the assimilation scheme affects the distribution of the model error among the different spatial scales.  相似文献   

9.
《Marine Structures》2003,16(1):35-49
Wind forecasts over a varying period of time are needed for a variety of applications in the coastal and ocean region, like planning of construction and operation-related works as well as prediction of power output from wind turbines located in coastal areas. Such forecasting is currently done by adopting complex atmospheric models or by using statistical time-series analysis. Because occurrence of wind in nature is extremely uncertain no single technique can be entirely satisfactory. This leaves scope for alternative approaches. The present work employs the technique of neural networks in order to forecast daily, weekly as well as monthly wind speeds at two coastal locations in India. Both feed forward as well as recurrent networks are used. They are trained based on past data in an auto-regressive manner using back-propagation and cascade correlation algorithms. A generally satisfactory forecasting as reflected in its higher correlation and lower deviations with actual observations is noted. The neural network forecasting is also found to be more accurate than traditional statistical time-series analysis.  相似文献   

10.
A real-time beach hazard level associated with nearshore hydrodynamics is presented in this article. The suitability of the discussed alert system is illustrated via its application to fifteen beaches in the Balearic Islands (Western Mediterranean Sea) providing nearshore safety conditions for beach safety manager. The system provides daily forecasts of nearshore wave conditions using the deep water wave forecasts. The shallow water wave data (wave height, period, and direction) together with the morphology of the site (presence of bars, capes, beach type, etc.) are used to define a hazard level (low, medium, and high) associated with local conditions. The resulting hazard level is transmitted via SMS to lifeguards and local authorities for real-time beach management. The low computational cost of this system after the initial implementation and subsequent calibration results in a very suitable approach for beach management in order to mitigate risks related to local hydrodynamics.  相似文献   

11.
The response of the Black Sea mean level to atmospheric pressure (AP) and wind forcing is investigated using 5 years of TOPEX/POSEIDON (T/P hereafter) data. A coherence analysis is first applied to mean sea level and pressure to examine the validity of the inverse barometer (IB) approximation over this area. As expected, it reveals very significant deviations from an IB response attributed to the narrowness of the Bosphorus Strait and its limiting role in water exchanges. A comparison is drawn with the Mediterranean Sea case. A single basin version of the Candela analytical model [Candela, J., 1991. The Gibraltar Strait and its role in the dynamics of the Mediterranean Sea. Dyn. Atmos. Oceans 15, 267–300], which takes linear friction at the strait into account, is then used. The model explains a significant part of the T/P mean sea level variance (about 30%, while the IB correction only explains 5% of its variance) and provides a means to correct the altimeter data for the pressure effect much better than the standard IB effect. The response of the mean sea level to wind forcing is then analysed. Coherence analysis between sea level and along-strait wind stress (WS) reveals a significant coherence at periods ranging from 40 to 100 days, with an almost steady phase of 270°. This result is confirmed with a multiple coherence analysis (mean sea level vs. WS and AP). A plausible mechanism is a piling-up of water at the northern or southern end of the strait due to along-strait wind forcing. The associated along-strait pressure gradient would modify the barotropic flow in the strait and then the mean sea level. Using an extension of the Candela model, we show that this mechanism is consistent with T/P mean sea level observations.  相似文献   

12.
This paper presents Prototype Système 2 Global (PSY2G), the first Mercator global Ocean General Circulation Model (OGCM) to assimilate along-track sea level anomaly (SLA) satellite data. Based on a coarse resolution ocean model, this system was developed mainly for climatic purposes and will provide, for example, initial oceanic states for coupled ocean-atmosphere seasonal predictions. It has been operational since 3 September 2003 and produces an analysis and a two-week forecast for the global ocean every week. The PSY2G system uses an incremental assimilation scheme based on the Cooper and Haines [Cooper, M., Haines, K., 1996. Data assimilation with water property conservation. J. Geophys. Res., 101, 1059-1077.] lifting–lowering of isopycnals. The SLA increment is obtained using an optimal interpolation method then the correction is partitioned into baroclinic and barotropic contributions. The baroclinic ocean state correction consists of temperature, salinity and geostrophic velocity increments and the barotropic correction is a barotropic velocity increment. A reanalysis (1993–2003) was carried out that enabled the PSY2G system to perform its first operational cycle. All available SLA data sets (TOPEX/Poséïdon, ERS2, Geosat-Follow-On, Jason1 and Envisat) were assimilated for the 1993–2003 period. The major objective of this study is to assess the reanalysis from both an assimilation and a thermodynamic point of view in order to evaluate its realism, especially in the tropical band which is a key region for climatic studies. Although the system is also able to deliver forecasts, we have mainly focused on analysis. These results are useful because they give an a priori estimation of the qualities and capabilities of the operational ocean analysis system that has been implemented. In particular, the reanalysis identifies some regional biases in sea level variability such as near the Antarctic Circumpolar Current, in the eastern Equatorial Pacific and in the Norwegian Sea (generally less than 1 cm) with a small seasonal cycle. This is attributed to changes in mean circulation and vertical stratification caused by the assimilation methodology. But the model's low resolution, inaccurate physical parameterisations (especially for ocean–ice interactions) and surface atmospheric forcing also contribute to the occurrence of the SLA biases. A detailed analysis of the thermohaline structure of the ocean reveals that the isopycnal lifting–lowering tends to diffuse vertically the main thermocline. The impact on temperature is that the surface layer (0–200 m) becomes cooler whereas in deeper waters (from 500 to 1500 m), the ocean becomes slightly warmer. This is particularly true in the tropics, between 30°N and 30°S. However it can be demonstrated that the assimilation improves the variability in both surface currents and sub-surface temperature in the Equatorial Pacific Ocean.  相似文献   

13.
采用曲线坐标系下的准三维近岸流波流耦合数值模型,采用边界适应曲线计算网格和两层嵌套方法,设计一套简单实用的天文潮预报系统,并引入风场以及考虑天文潮和风暴潮之间非线性作用的开边界水位,对2003年渤海发生的一次温带风暴潮进行模拟,计算结果与实测潮位吻合较好。  相似文献   

14.
The quality of surface winds derived from four meteorological models is assessed in the semi-enclosed Adriatic Sea over a 2-month period: a global hydrostatic model ECMWF T511 (40 km resolution), a hydrostatic limited area model LAMBO (20 km), and two non-hydrostatic limited area models: LAMI (7 km) and COAMPS™ (4 km). These wind models are used to drive a 2 km resolution wave model (SWAN) of the Adriatic, and wind and wave results are compared with observations at the ISMAR oceanographic tower off Venice. Waves are also compared at buoy locations near Ancona and Ortona. Consistently with earlier studies, the ECMWF fields underestimate the wind magnitude and do not reproduce the known spatial structure of strong wind events. The results show that the higher-resolution, limited area models LAMI and COAMPS exhibit better amplitude response than the coarser ECMWF: there is a 3- to 4-fold reduction of the wind underestimation at the platform (from 36% to 8–11%). The wave response is also improved with LAMI and COAMPS: there is a 2-fold reduction in the underestimation of wave heights at the platform. These non-hydrostatic models also produce wind fields with more realistic small-scale, spatial structure during strong wind events. The temporal correlation between observed and modelled wind, however, is highest with the global ECMWF model due to the fact that large-scale features can be predicted deterministically, whereas small-scale features can only be predicted stochastically. Models with less small-scale structure have better correlation because they have less “noise.” This explanation is supported by increased correlation between modelled and observed waves, the waves representing a smoothing of the wind over fetch and duration. Although there is room for improvement, the high-resolution, non-hydrostatic models (LAMI and COAMPS) offer significant advantages for driving oceanographic simulations in semi-enclosed basins such as the Adriatic Sea.  相似文献   

15.
Oxygen and phosphorus dynamics and cyanobacterial blooms in the Baltic Sea are discussed using results from the Swedish Coastal and Ocean Biogeochemical model (SCOBI) coupled to the Rossby Centre Ocean model (RCO). The high-resolution circulation model is used to simulate the time period from 1902 to 1998 using reconstructed physical forcing and climatological nutrient loads of the late 20th century. The analysis of the results covers the last 30 years of the simulation period. The results emphasize the importance of internal phosphorus and oxygen dynamics, the variability of physical conditions and the natural long-term variability of phosphorus supplies from land on the phosphorus content in the Baltic Sea. These mechanisms play an important role on the variability of available surface layer phosphorus in late winter in the Baltic Sea. The content of cyanobacteria increases with the availability of phosphorus in the surface layers of the Baltic proper and the probability for large cyanobacteria blooms in the model is rapidly increased at higher concentrations of excess dissolved inorganic phosphorus in late winter. The natural increase of phosphorus supplies from land due to increased river runoff since the early 1970s may to a large degree explain the increased phosphorus content in the Baltic proper. Another significant fraction of the increase is explained by the release of phosphorus from increased anoxic areas during the period. These results refer to the long-term variability of the phosphorus cycle. In accordance to earlier publications is the short-term (i.e. interannual) variability of the phosphorus content in the Baltic proper mainly explained by oxygen dependent sediment fluxes.  相似文献   

16.
A data assimilation system is applied to the integrated monitoring of oceanic states in the northwestern North Pacific by combining a high resolution ocean general circulation model with an adjoint method. A comparison of assimilation results with observations shows that the system is better able to represent synoptic features of ocean circulation than do models or data alone. Furthermore, meso-scale features associated with frontal structures and eddies, which are often seen in the Kuroshio and Oyashio extension regions and the Sea of Japan, are better defined in the assimilation results. These features suggest that our 4D-VAR high-resolution data assimilation system is capable of providing time series data which satisfy the model physics and fit the observations, and hence the ocean state derived from our system has greater information content than that obtained from earlier methods.  相似文献   

17.
A one-dimensional coupled physical–biogeochemical model has been built to study the pelagic food web of the Ligurian Sea (NW Mediterranean Sea). The physical model is the turbulent closure model (version 1D) developed at the GeoHydrodynamics and Environmental Laboratory (GHER) of the University of Liège. The ecosystem model contains 19 state variables describing the carbon and nitrogen cycles of the pelagic food web. Phytoplankton and zooplankton are both divided in three size-based compartments and the model includes an explicit representation of the microbial loop including bacteria, dissolved organic matter, nano-, and microzooplankton. The internal carbon/nitrogen ratio is assumed variable for phytoplankton and detritus, and constant for zooplankton and bacteria. Silicate is considered as a potential limiting nutrient of phytoplankton's growth. The aggregation model described by Kriest and Evans in (Proc. Ind. Acad. Sci., Earth Planet. Sci. 109 (4) (2000) 453) is used to evaluate the sinking rate of particulate detritus. The model is forced at the air–sea interface by meteorological data coming from the “Côte d'Azur” Meteorological Buoy. The dynamics of atmospheric fluxes in the Mediterranean Sea (DYFAMED) time-series data obtained during the year 2000 are used to calibrate and validate the biological model. The comparison of model results within in situ DYFAMED data shows that although some processes are not represented by the model, such as horizontal and vertical advections, model results are overall in agreement with observations and differences observed can be explained with environmental conditions.  相似文献   

18.
Wind measurements from SeaWinds scatterometer on the NASA QuikSCAT satellite and wind forecasts from two different operational numerical models provided by MeteoGalicia were compared for a 4-year period (2002–2005) in Galician coast environment. Available wind data buoy measurements were also used to complement the analysis. A statistical analysis based on mean errors, root mean square errors and complex correlation was performed from spatial, temporal and directional points of view.In the spatial comparison no significant differences between models and satellite were observed and the error magnitudes of the models are compatible with typical QuikSCAT errors. The suitability of satellite wind estimations for data assimilation in these models must be further investigated. Negative bias of models with respect to the satellite was also confirmed with buoy data, in such a way that models overestimation is smaller than the satellite one. Big errors in wind direction appear in southeasterly and southwesterly winds for both satellite and models, contributing to high RMSE values when compared to buoy data. These errors were mainly attributed to the effect of insufficient spatial resolution near shore.  相似文献   

19.
使用WAMIT软件建立了OC3-Hywind Spar式浮式风机模型,联合FAST软件计算了浮式风机在不同工况下的幅值响应算子;结合为南海海域波浪条件优化后的JONSWAP谱,对浮式风机进行了不同工况下的响应谱分析及最大响应值计算;进一步阐述了浮式平台结构构型参数的变化对整体结构在南海相应工况下的运动影响。  相似文献   

20.
Air–sea flux measurements of O2 and N2 obtained during Hurricane Frances in September 2004 [D'Asaro, E. A. and McNeil, C. L., 2006. Measurements of air–sea gas exchange at extreme wind speeds. Journal Marine Systems, this edition.] using air-deployed neutrally buoyant floats reveal the first evidence of a new regime of air–sea gas transfer occurring at wind speeds in excess of 35 m s− 1. In this regime, plumes of bubbles 1 mm and smaller in size are transported down from near the surface of the ocean to greater depths by vertical turbulent currents with speeds up to 20−30 cm s− 1. These bubble plumes mostly dissolve before reaching a depth of approximately 20 m as a result of hydrostatic compression. Injection of air into the ocean by this mechanism results in the invasion of gases in proportion to their tropospheric molar gas ratios, and further supersaturation of less soluble gases. A new formulation for air–sea fluxes of weakly soluble gases as a function of wind speed is proposed to extend existing formulations [Woolf, D.K, 1997. Bubbles and their role in gas exchange. In: Liss, P.S., and Duce, R.A., (Eds.), The Sea Surface and Global Change. Cambridge University Press, Cambridge, UK, pp. 173–205.] to span the entire natural range of wind speeds over the open ocean, which includes hurricanes. The new formulation has separate contributions to air–sea gas flux from: 1) non-supersaturating near-surface equilibration processes, which include direct transfer associated with the air–sea interface and ventilation associated with surface wave breaking; 2) partial dissolution of bubbles smaller than 1 mm that mix into the ocean via turbulence; and 3) complete dissolution of bubbles of up to 1 mm in size via subduction of bubble plumes. The model can be simplified by combining “surface equilibration” terms that allow exchange of gases into and out of the ocean, and “gas injection” terms that only allow gas to enter the ocean. The model was tested against the Hurricane Frances data set. Although all the model parameters cannot be determined uniquely, some features are clear. The fluxes due to the surface equilibration terms, estimated both from data and from model inversions, increase rapidly at high wind speed but are still far below those predicted using the cubic parameterization of Wanninkhof and McGillis [Wannikhof, R. and McGillis, W.R., 1999. A cubic relationship between air–sea CO2 exchange and wind speed. Geophysical Research Letters, 26:1889–1892.] at high wind speed. The fluxes due to gas injection terms increase with wind speed even more rapidly, causing bubble injection to dominate at the highest wind speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号