首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘喆 《湖南交通科技》2012,(3):9-10,119
采用Bisar3.0软件,针对半刚性基层与沥青面层处于完全连续、部分连续、完全光滑三种接触状态的整体路面结构进行了力学计算,并分别对其力学分布规律进行了分析。结果显示:层间接触状态的改变使整个路面结构受力发生了显著变化,并且层间存在应力突变,在设计中应当充分考虑不同结构层的结构组合,施工中做好层间处治工作。  相似文献   

2.
分析半刚性基层的缺点,提出混合式基层沥青路面结构,并给出超载条件下轴载计算参数。采用Bisar3.0软件,计算在完全连续、部分连续和完全光滑三种界面条件下混合式基层沥青路面各结构层层底拉应力。结果表明,在完全连续条件下沥青层不会产生拉应力,路面内部拉应力最大值出现在半刚性基层底部;当沥青层与半刚性基层之间的接触条件由完全连续向完全光滑转变时,沥青层层底和半刚性基层层底的拉应力逐渐增大;在三种界面条件下,沥青面层表面轮隙中心处都出现较大的拉应力。  相似文献   

3.
路面结构层的层间结合是影响路面整体结构强度的重要因素,采用BISAR3.0路面应力计算程序,分析了面层竖向应力、面层和基层底面拉应力、路表弯沉、面层剪应力最大值的产生位置,以及路面结构层层间接触状态的变化趋势。分析结果表明:层间完全滑动状态下,路表弯沉、基层底拉应力、面层竖向应力、面层剪应力等路面设计控制指标比连续状态提高1.5~2.5倍;面层、基层疲劳寿命比连续状态急剧降低。  相似文献   

4.
复合式基层路面结构就是在半刚性路面结构的基础上,在半刚性基层与沥青混凝土面层之间增加了一层起应力分散作用的柔性材料,为此针对3种复合式基层沥青路面结构,选取其中两种用BISAR 3.0和MATLAB 7.0对其剪应力进行了研究。结果表明,荷载横断面上,剪应力的最大值在单圆荷载两侧的路表面以下一点;选择抗剪性能良好的中面层材料和处理好面层与基层之间的过渡对于延长整个路面的使用寿命同等重要;较厚的沥青面层结构能延长路面的疲劳寿命。  相似文献   

5.
应用路面专用软件Bisar对半刚性基层和柔性基层沥青路面结构进行的应力分析比较结果表明:柔性路面与半刚性路面的结构特点存在明显区别。只有了解各自的结构特点,才能进行合理的路面结构设计。  相似文献   

6.
半刚性基层与柔性基层沥青路面结构分析   总被引:2,自引:0,他引:2  
应用路面专用软件Bisar对半刚性基层和柔性基层沥青路面结构进行的应力分析比较结果表明:柔性路面与半刚性路面的结构特点存在明显区别。只有了解各自的结构特点,才能进行合理的路面结构设计。  相似文献   

7.
针对佛山官西线冷再生路面结构设计,采用有限元计算软件BISAR 3.0分析了原路当量回弹模量、沥青面层厚度、基层厚度和基层模量对冷再生路面结构力学性能的影响,以便为合理的冷再生路面结构设计提供参考.分析表明:原路面当量回弹模量直接决定改建后路面的使用性能;面层越厚,基层抗疲劳性能、路面抗车辙性能增强,路表弯沉减小;冷再...  相似文献   

8.
针对目前普遍采用无机结合稳定粒料(土)类为基层的沥青路面,利用Bisar3.0分析这种典型的半刚性基层沥青路面各结构层层底应力变化情况。得出各结构层应力特点,并根据各结构层材料特性分析应力与路面病害关联性。  相似文献   

9.
为了从理论上进一步验证结构层模量梯度控制的必要性,以对受力影响最为显著的基面层模量比为切入点,选取层间不完全连续接触,利用壳牌路面设计软件Bisar 3.0全面计算基面层模量比变化时半刚性路面的力学响应,将模量比的影响定量化.结果表明:基面层模量比从1增大到3.5时,沥青层最大拉应变与结构最大弯拉应力均呈先减后增趋势,同时面层剪应力随之增大;基面层刚度差异过大导致上基层层底拉应力骤增;规范推荐基面层模量比1.5~3较合理,可保证路面受力均衡.  相似文献   

10.
通过对沥青路面基层和面层滑移破坏进行的实地调查,应用有限元计算了路面层间的剪应力,并采用路面材料剪切仪进行了室内的层间剪切试验,研究了沥青路面的层间抗剪切能力,分析了导致路面结构层层间滑移的主要原因,并提出了相应的解决措施.  相似文献   

11.
随着我国经济的发展,人民的生活水平有了显著的提高,其中包括出行条件有了明显提高,尤其在公路的建设方面。现在我国的许多公路采取半刚性路面基层施工技术。半刚性路面基层是指在路面基层材料中掺入一定比例的石灰、水泥、粉煤灰或其他工业废渣等结合料,加水拌和形成的混合料经摊铺压实及养生后形成的路面基层。基层施工首先是对路面的平整度有重要影响。基层的平整度对薄层沥青面层的平整度有十分重大的影响,薄沥青面层的平整度取决于基层的平整度。基层的平整度对较厚沥青混凝土面层的平整度的影响虽不如对薄沥青面层的影响那么大,但基层的不平整会引起沥青混凝土面层厚薄不匀,使沥青面层在使用过程中的平整度降低较快,并导致沥青混凝土成层产生一些薄弱面。其次会对路面的强度及裂缝产生影响。在路面使用期间,基层产生的温度收缩裂缝会辐射到路面,产生路面裂缝。同时还会对路面沥青混合料的强度产生影响。因此保证半刚性基层的施工质量对整个公路工程具有重要意义。下面,笔者结合施工实践,对公路半刚性基层施工的原理、质量的影响因素和施工质量的控制要点,进行简要分析,希望对诸位同行具有一定的借鉴意义。  相似文献   

12.
运用大型通用有限元软件ANSYS对水泥混凝土路面面层和基层贫混凝土的层间作用进行了分析,结果表明:水泥混凝土路面面层和基层贫混凝土之间的摩擦系数的取值最大不应该超过9.0。把室内水泥混凝土与贫混凝土界面的直剪试验结果和有限元计算数据对比分析,可以得到不用层间处理状况下所对应的水泥混凝土面层与贫混凝土基层之间的结合系数。  相似文献   

13.
为了改善水泥混凝土路面面层和基层间的不良接触状况,提出了在面层和基层间设置水泥乳化沥青砂浆(简称CA砂浆)功能层的措施,借助CA砂浆功能层的材料特性,改善面层和基层的不良受力状况,延缓水泥混凝土路面结构的早期破坏。为了更好地分析路面结构的实际受力状态,有必要进行路面结构在移动荷载作用下的力学响应分析。将运动的车辆荷载等效简化为匀速移动的面荷载,建立路面结构三维有限元模型,分析设置CA砂浆功能层前后路面结构所受荷载应力的变化,探讨CA砂浆功能层的作用。  相似文献   

14.
半刚性基层模量对路面结构受力的影响   总被引:1,自引:0,他引:1  
针对不同的半刚性基层模量,采用BISAR3.0计算程序进行计算,分析了面层竖向应力、面层底面及基层底面拉应力、路表弯沉、表面剪应力最大值产生的位置,以及随半刚性基层模量的变化趋势.结果表明:过大的基层模量,会导致路面车辙,发生剪切破坏、基层开裂,降低面层的疲劳寿命,但过小的基层模量又不能形成足够的强度;综合分析认为,基...  相似文献   

15.
半刚性基层沥青路面具有承载力高、行车舒适等优点,但由于半刚性材料收缩性大的特点,基层容易开裂并最终会反射到沥青面层上,使半刚性基层产生收缩裂缝,并最终导致沥青混凝土面层开裂,从而大大地缩短沥青混凝土路面的使用寿命。根据多年的路面施工经验,对半刚性基层裂缝的原因及处治方法进行综合分析。  相似文献   

16.
浅析沥青路面反射裂缝的产生及防治措施   总被引:1,自引:0,他引:1  
半刚性基层沥青路面具有承载力高、行车舒适等优点,但由于半刚性材料收缩性大的特点,基层容易开裂并最终会反射到沥青面层上,使半刚性基层产生收缩裂缝,并最终导致沥青混凝土面层开裂,从而大大地缩短沥青混凝土路面的使用寿命。根据多年的路面施工经验,对半刚性基层裂缝的原因及处治方法进行综合分析。  相似文献   

17.
半刚性与柔性基层沥青路面重载适应性对比分析   总被引:1,自引:0,他引:1  
以路面力学APBI程序为计算工具,对重载车辆荷载作用下的半刚性基层沥青路面和柔性基层沥青路面进行力学响应对比分析,研究路表弯沉、路面结构各层次(包括路表、面层、基层、底基层)的力学特性。结果表明,半刚性路面与柔性路面的重载适应性存在明显差异。通过对半刚性基层与柔性基层结构的合理优化组合,实现两种路面结构的优势互补。  相似文献   

18.
沥青路面层间滑移破坏分析   总被引:3,自引:0,他引:3  
通过对沥青路面基层和面层滑移破坏进行的实地调查,应用有限元计算了路面层问的剪应力,并采用路面材料剪切仪进行了室内的层间剪切试验,研究了沥青路面的层问抗剪切能力,分析了导致路面结构层层问滑移的主要原因,并提出了相应的解决措施.  相似文献   

19.
徐伟杰 《北方交通》2012,(10):31-33
基于我国的沥青路面设计理论及标准,选取典型半刚性基层路面结构及材料参数,采用BISAR3.0软件对不同荷载作用下的路面结构应力、应变和位移进行计算,并分析了各力学指标对道路结构的影响。结果显示:不同荷载模式对路面结构的影响相当大,这对进一步解释路面面层的一些破坏现象提供了有益的参考。  相似文献   

20.
大量半刚性基层路面结构运营未达到设计要求,主要原因是轴载换算存在不足。为了研究轴载换算中轮组系数的值,使用Apbi计算软件,考虑面层厚度、面层模量、基层模量的不同,计算弯沉与应力,根据推导而得的轮组系数公式计算得到轮组系数,结果表明:面层厚度、面层模量、基层模量对轮组系数的影响不大,但计算结果与规范相差较远。通过计算得出与规范不同的轮组系数,可为轴载换算的修正提供参考数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号