首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
北极东北航道开发和利用,对北极水域船舶通航安全管理提出了更高的要求.采用数据挖掘技术对2015—2017年北极东北航道船舶自动识别系统(AIS)的数据进行了处理与分析;采用Douglas-Peuker算法,对海量船舶AIS轨迹数据进行抽稀与验证;然后利用KD-Tree、DBSCAN和族心确认算法,对海量船舶AIS轨迹点进行了时空聚类分析;成功提取了船舶类型、船旗国、船舶轨迹、船舶密度及船舶速度等船舶行为特征,探索研究了船舶行为特征对于北极东北航道能源、环保及海上交通服务的作用与意义.研究表明,北极东北航道航行船舶以渔船和货船为主,船旗国以靠挪威和俄罗斯籍为主,船舶活动区域集中在巴伦支海与挪威海,主航道主要以8~15 kn速度航行.   相似文献   

2.
从内河海量的船舶AIS数据中提取出有用的交通知识,辅助水上安全监管,对于研究日益复杂的水上交通安全形势具有重要意义.基于内河船舶行为特征,构造由船舶位置、航速和航向4个维度组成的船舶航行状态空间来描述船舶行为.针对传统DBSCAN聚类算法提取状态空间中相似船舶轨迹存在计算复杂高的问题,提出增量式算法改进DBSCAN算法用以高效地计算不同船舶的行为模式;然后利用核密度估计等统计方法对不同模式的船舶行为特征进行数据挖掘,得到船舶航速、航向和位置的时空分布特征规律,进一步挖掘不同行为模式下的船舶微观特征.以武汉航段的汉江分叉航道水域作为研究案例,利用所提的方法对该水域分析研究,得到了6类不同行为模式,挖掘出不同模式下分叉航道内船舶静态属性信息(船舶类型、船舶尺寸)、空间分布特征(轨迹点分布、航速分布、航向分布)、船舶到达规律等信息.利用该模型所提取的知识有助于水上监管人员迅速获取水域交通态势,从而提高水上交通安全监管的水平和效率.   相似文献   

3.
利用船舶AIS轨迹数据,研究了基于蚁群算法和海量AIS数据的航线规划方法.采用Doug-las-Peucker算法对海量轨迹数据进行压缩处理;基于DBSCAN算法对处理后的AIS轨迹点数据进行聚类,提取出航路关键转向点;依据地理边界数据确定关键转向点的连接关系,并对靠近孤立碍航物的航线进行修正,构建出1个无向网络图,同时计算出各条边的船舶航行密度;将各边的密度值作为MMAS蚁群算法的初始信息素浓度,求解港口间的最优安全航线.以2017年黑德兰港到青岛港的散货船AIS轨迹数据为样本,进行航线规划研究.结果表明,规划的航线总航程为3487.21 n mile,推荐航线总里程为3576.9 n mile,传统蚁群算法规划出的航线总里程为3560.42 n mile.与相关推荐航线相比总航程缩短约为3%,与传统蚁群算法相比总航程缩短约2%;另外该方法相较于传统蚁群算法收敛速度更快.   相似文献   

4.
为去除交通信息采集过程中的噪声干扰,提出了一种基于小波分析和卡尔曼滤波相融合的交通数据去噪算法。该算法通过小波系数计算小波方差并代替卡尔曼滤波的初始协方差完成迭代,将小波阈值去噪重构后的信号作为卡尔曼滤波器状态最优估计中的测量值输入,实现了交通数据的分解去噪和最优估计。实例分析结果表明:一方面小波-卡尔曼滤波融合去噪算法的去噪指标优于小波分析算法;另一方面采用去噪后的实时交通数据建立时间序列预测模型,由三项预测误差评价指标及拟合预测图对比可知,小波-卡尔曼滤波融合去噪算法较小波分析算法可更好地提高预测精度,从而综合验证该融合算法能有效去除交通数据中的噪声干扰,并提高其数据质量。  相似文献   

5.
轨迹聚类在船舶行为分析与海事监管等领域发挥着重要作用。船舶轨迹存在长度与采样率不一致、结构差异明显等特点,在大范围水域难以实现大量船舶轨迹的高精度与快速聚类。针对该问题,在利用船舶自动识别系统获取海量船舶历史航行数据的基础上,提取与船舶航行行为、船舶交通密度相关的位置特征点,进而提出了多特征点驱动的船舶轨迹聚类方法。针对船舶航行时在大多数情形下具有保向、保速的特点,采用数据压缩的方法捕获船舶航行状态以及船舶航向发生显著变化的轨迹点,作为船舶轨迹结构特征点;针对目标水域中某些特定区域常存在船舶交叉会遇的情形,利用概率密度估计法分析船舶交通流的空间分布特点,并提取船舶会遇局面下的轨迹点,作为船舶交通流特征点;为剔除2类特征点中的异常值,采用密度聚类算法对特征点进行聚类,进一步提高特征点提取的可靠性,并将聚类结果中每类特征点的中心作为代表性特征点;统计途经代表性特征点的船舶轨迹分布情况,将具有相似分布的船舶轨迹视为同一类。实验结果表明:相比于常用的K-medoids聚类、层次聚类、谱聚类和DBSCAN等方法,提出的轨迹聚类方法在成山头水域、长江口南槽水域及舟山水域等典型区域均可获得优异的聚类结果;在上述典型水域,平均轮廓系数分别提升约53%,71%,63%和41%,戴维森堡丁指数分别降低约57%,67%,63%和45%;同时,此方法可平均降低约56%的聚类时间,显著提升了船舶轨迹数据聚类分析的效率。   相似文献   

6.
高解析度轨迹数据蕴含丰富车辆行驶与交通流时空信息.为从航拍视频中提取车辆轨迹,构建了车辆检测目标跨帧关联与轨迹匹配融合方法.采用卷积神经网络YOLOv5构建视频全域车辆目标检测,提出车辆动力学与轨迹置信度约束下跨帧目标关联算法,建立了基于最大相关性的断续轨迹匹配与融合构建算法,实现轨迹车辆唯一编号.将轨迹从图像坐标转换为车道基准下Frenet坐标,构建集合经验模态分解(EEMD)模型进行轨迹数据噪声消除.采用南京市快速路无人机拍摄的2组开源航拍视频,涵盖拥堵与自由流交通状态,对轨迹提取算法进行效果测试.结果表明,在自由流和拥挤条件下轨迹准确率分别为98.86%和98.83%,轨迹召回率为93.00%和86.69%,构建算法的轨迹提取速度为0.07 s/辆/m.该方法处理得到的详细车辆时空轨迹信息能为交通流、交通安全、交通管控研究提供广泛的数据支撑,数据公开于http://seutraffic.com/.  相似文献   

7.
精细车辆轨迹中包含连续的时间戳、位置,以及速度等信息。通过对车辆轨迹数据进行量化表达与挖掘分析,可以实现对车辆行为模式的分类。现有研究大多关注对位置的聚类,很少对车速、加速度等特征进行研究分析,而车速等是反映驾驶行为模式的重要特征。为了将轨迹多维信息纳入分析框架,研究了基于位置与速度特征的车辆轨迹行为模式分类方法。为克服现有行为模式分类方法的维度单一性,运用豪斯多夫轨迹距离算法计算出位置和速度特征的综合距离矩阵,针对豪斯多夫距离算法鲁棒性差的缺点,采用单向豪斯多夫距离90%分位值对算法进行了改进,降低噪声影响。同时,引入了车辆位置和速度来进一步提高分类的准确性,运用多次分层聚类算法依次对位置与速度轨迹图进行分类,得到车辆位置和速度上的行为模式。以HighD数据集为样本,提取了三车道上的行车轨迹,验证了基于速度与位置特征的车辆行为模式分类方法。结果表明:①本方法可以得到位置和速度的综合行为模式,聚类平均准确率达到94.8%,优于DBTCAN准确率89.3%和t-Cluster准确率86.4%;②基于换道模式轨迹偏移率曲线的分析,得到了4种互异的典型车辆换道模式。该方法可利用多维轨迹数据对行车模式进行分类及行为辨识,在车辆轨迹分类与不良行为辨识方面具有应用潜力。   相似文献   

8.
隧道监控量测过程中的数据含有误差和施工扰动,位移曲线出现异常点,不利于位移趋势的判别.运用小波变换和去噪技术,将吉怀高速的关冲隧道的拱顶下沉观测值作为样本,运用Daubechies小波和Heursure软阈值进行消噪,结果表明可以有效的消除大部分施工扰动造成的异常,并可根据异常点和位移趋势了解噪声的产生原因.  相似文献   

9.
准确发现邮轮内部空间乘客之间的伴随关系, 在室内环境安装UWB定位设备开展室内人员定位实验。根据UWB定位的位置数据特点, 提出结合室内位置语义的Hausdorff-DBSCAN算法以聚类邮轮乘员轨迹, 并利用LSTM神经网络对疑似伴随关系对象进行相似度变化趋势的预测。传统的Hausdorff算法在计算轨迹相似度时未考虑轨迹时序一致的问题, 引入位置语义序列能够较好地解决这个问题。改进后的Hausdorff-DBSCAN算法的输入为乘员轨迹数据集, 根据轨迹整体相似度阈值选定聚类半径, 输出具有伴随关系的乘员轨迹聚类结果; LSTM神经网络以定长时间窗口的点邻近度序列为输入, 预测后1个时刻点邻近度值, 结合轨迹相似度阈值和预测结果分析乘员伴随关系的时序变化。利用Anylogic建模单层邮轮室内环境进行乘员仿真得到的轨迹数据验证算法的有效性。改进的Hausdorff-DBSCAN算法的准确率为0.920, 召回率为0.950, F1值为0.934, 准确率高出对比算法至少5.7%, 召回率高出对比算法至少8.0%, F1值高出对比算法至少6.7%。同时LSTM在预测邮轮乘员之间相似度变化时, 收敛后的误差值能保持在3%~4%左右, 预测结果具有较高的准确性。   相似文献   

10.
针对典型水上交通场景交汇水域,研究了1种数据驱动的船舶轨迹预测与航行意图识别方法。设计CNN+LSTM组合神经网络,通过学习交汇水域船舶的历史轨迹,以CNN+LSTM网络为编码器提取其通航环境及船舶航行时空特征,LSTM与全连接层为解码器同步输出未来时段内船舶轨迹序列和航路选择,从而形成船舶轨迹与航行意图识别模型。同时,引入Dropout网络结构描述该模型的预测不确定性,采用随机关闭CNN+ LSTM核心网络部分神经单元的方式,以相同轨迹序列作为输入获取多组相近的预测结果,根据其统计均值与方差对船舶轨迹预测的不确定性进行量化。以美国沿海某交汇水域公开AIS数据为对象开展实验,创建了该交汇水域船舶航行轨迹数据集,以输入时长60 min,采样频率3 min作为输入条件,Dropout值取0.5,实验结果表明:所提方法对未来60 min时段内的轨迹预测误差为3.946 n mile,航行意图识别准确率达87%,不确定性估计覆盖率达85.7%。与LSTM预测方法相比,当船舶操纵性发生改变时,所提CNN+LSTM模型的轨迹预测误差降低了31.6%,而且兼具船舶航行意图识别及预测不确定性估计能力,有利于智能航行与海事监管技术发展。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号