首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为保证列车运行安全性, 提高铁路线路运载效能, 针对移动闭塞系统, 研究了高速列车追踪运行的间隔弹性调整策略和操纵轨迹的动态优化问题; 以高速列车运行安全性、效率、能耗和乘客舒适度作为列车运行控制策略曲线的优化目标, 研究了列车的追踪运行过程; 采用差分进化算法求解了列车运行过程多目标优化模型, 设计了离线最优运行控制策略曲线; 提出了列车弹性追踪间隔模型, 分析了列车运行过程中追踪间隔的实时变化; 基于弹性间隔模型设计列车追踪运行控制策略动态调整机制, 采集列车实际运行数据, 实时监测相邻列车间的实际追踪间隔, 评估其是否符合安全性与效率约束条件, 并分析了评估结果; 依据工况调整原则在线调整追踪列车的运行状态与工况, 实时优化列车追踪间隔; 应用武广高速铁路赤壁北—长沙南区间的实际运行数据进行了仿真验证。仿真结果表明: 与真实区间运行数据相比, 采用离线最优运行控制策略曲线后, 运行能耗降低了6.86%;与固定追踪时间间隔模型相比, 采用基于弹性模型的控制策略动态调整机制有效提升了铁路整体运输效能, 将临界安全发车间隔从234 s缩短至161 s, 线路整体运行效率由6 434 s缩短至6 376 s, 与真实运行数据相比, 追踪列车的运行能耗降低了7.194%。   相似文献   

2.
针对高速列车运行过程中因不确定运行阻力和模型误差等因素产生的系统误差,提出了新的基于特征模型的高速列车自适应误差补偿控制策略,实现了其对给定目标速度曲线的渐近跟踪。首先通过动力学分析,基于特征建模方法和参数辨识,建立了存在系统误差的高速列车特征模型;其次,利用扩张状态观测器对系统误差的估计能力,设计了基于特征模型的高速列车自适应误差补偿控制器,并结合广义最小方差方法对控制器参数进行了优化,使其在存在系统误差时仍能实现对给定速度曲线的渐近跟踪。该控制策略能够有效处理系统误差带来的不确定性,提高控制精度,从而保障高速列车的安全可靠运行。为了验证本文所提方法的有效性,以CRH380A型高速列车为被控对象进行仿真实验。仿真结果表明设计的补偿控制方法在列车存在未知系统误差的情况下仍能保证理想的控制性能。  相似文献   

3.
科学、合理的仿真模型是研究地铁列车折返间隔的关键.本文建立的连续型元胞自动机模型,在参数设置上具有更好的适配性,且能有效缩短步长,以提高仿真精度从而更精确地模拟列车实际运行.该仿真基于列车运行状态,对移动闭塞地铁列车追踪运行及站后折返场景进行了仿真,得到的时间-距离图、距离-速度图及现场实测数据验证了模型的可用性及仿真精度.同时定量分析了道岔侧向限速、列车制动性能、停站时间对折返间隔的影响,提出了缩短折返间隔的措施,使折返间隔降低了31.22%,为提高线路运营能力提供了参考.  相似文献   

4.
研究了铁路网络中列车可变更运行线路下的列车运行调整问题,目标是使得所有 列车偏离终到时间之和最小化.首先引入流平衡约束建立基于列车到发时刻的网络流模型,采 用商业软件GUROBI求解.同时构建了基于列车时空路径的整数规划模型,并给出了分支定 价算法,采用伪费用分支和最佳优先搜索策略加快算法的收敛.最后设计算例进行验证,通过 与GUROBI对比说明本文算法是有效的.当列车数为20 列时,求解时间减少91.6%,得到的最 终可行解距离最优解的间隔为9.72%.验证了本文分支策略较最为分数分支策略更优,列车运 行调整可变更线路相比于只能按原始线路行驶平均可降低目标函数值37.4%.  相似文献   

5.
列车实时运行调整与运行控制是实现高速列车准点节能运行的两个重要方面.本文构建高速列车运行调整与运行控制一体化优化模型,以降低列车总延误时间与运行能耗为目标,同时优化列车速度距离与时间距离曲线.与以往研究将列车运行调整与运行控制独立优化不同,本文基于列车牵引计算,通过锁闭时间理论将列车运行调整与控制的解空间进行耦合,根据列车运行速度、制动性能、信号系统的清空与开放时间、轨道区段/闭塞分区的长度等因素,精细化计算列车占用不同轨道区段/闭塞分区的时间,动态确定列车区间运行时分与追踪间隔.为求解复杂的非线性模型,设计分段近似法将非线性约束进行重构,从而将非线性优化模型转变为混合整数规划模型.通过算例计算,给出双目标问题的帕累托解集,与单目标优化方法对比,本文方法可以减少总能耗2.46%,降低运行总延误7.33%.  相似文献   

6.
地铁列车跨线运营模式使列车运行调整工作更为复杂精细。为应对因故障导致的线路区间通过能力下降,采用小交路折返、暂停运行、上线运行、取消跨线和恢复跨线这5种策略对列车运行图进行调整。考虑运行安全、配线占用、车底接续和乘客出行等约束,构建以乘客出行时间和列车延误最小化为目标的列车运行图调整优化模型,结合非支配遗传算法Ⅱ和跨线运营列车时刻推算算法对模型进行求解,并通过案例验证模型与算法的有效性。案例研究结果表明:与完全保留原跨线运营计划和转为独立运营模式的两种调整方案相比,本文提出的方法在多个场景下使乘客出行时间和列车运行延误分别平均减少了3.86%和21.07%;采用作业冗余时间较长的过轨方式可提高列车运行调整的抗风险能力,乘客平均换乘等待时间和列车平均延误分别进一步降低了4.06%和3.77%。  相似文献   

7.
基于微粒群算法的多目标列车运行过程优化   总被引:3,自引:1,他引:2  
为客观地描述列车的运行过程,建立了列车运行过程的多目标优化模型,并用微粒群算法求解该模型.针对多目标微粒群优化(MOPSO)算法的不足,提出了相应的改进措施和解的多样性保持策略.仿真结果表明,提出的优化列车运行过程的改进MOPSO算法可以在一次运行过程中获得多组列车操纵控制策略,清晰地显示出各性能指标随控制策略变化的趋势,控制序列转换次数大大降低,每组控制策略都可以在能耗、运行时间和停靠准确性之间获得很好的折衷效果,可以根据列车运行状况选择恰当的策略控制列车,以获得预期的结果.  相似文献   

8.
研究突发事件导致列车晚点情况下城市轨道交通列车运行调整问题.从乘客角度出发,提出了“首站控制”和“多站协调控制”两类列车运行调整策略.考虑列车能力约束和列车区间运行时间、追踪间隔时间等运行条件约束,以受突发事件影响的全部乘客等待时间最小为优化目标,建立了基于两类调整策略的列车运行调整模型,采用Lingo软件进行求解.以某简化线路为算例,与不采取控制策略相比,两类策略下乘客等待时间均节省约9%,结果表明了模型的有效性,能够为轨道交通列车运行调整提供辅助支持.  相似文献   

9.
现阶段城市轨道交通具有行车密度大、追踪间隔短等特点,列车延误一旦发生,其传播的速度快、影响范围大。为保证列车运行的正点率以及运输效率,根据城轨列车实际运营需要,在传统列车运行调整模型的优化目标中加入延误恢复时间最小这一目标,建立了以列车总延误时间和延误恢复时间最小为优化目标的城轨列车运行调整模型,并采用遗传算法对问题进行求解。最后以成都地铁一号线的列车运行调整问题为案例,根据城市轨道交通实际运营情况分别分析模型在ATO模式以及人工驾驶模式下的优化效果。结果表明当列车在人工驾驶模式下运行时,该列车运行调整模型可以在基本不影响总延误时间的同时显著降低列车的延误恢复时间。  相似文献   

10.
为提高列车控制过程的自主性和智能性,研究了列车群动态运行过程,采用多智能体和图论方法构建了列车群分布式信息交互模型;以节能和准点为优化目标,以安全和乘客舒适度为约束条件,建立了列车群运行轨迹多目标优化模型,利用基于模拟退火思想改进的差分进化算法获取了列车群静态最优运行轨迹;在此基础上,为避免或消解列车运行过程中随机干扰导致的延误传播问题,针对移动闭塞系统,基于弹复力构建了信息交互支撑的列车群动态间隔调整机制,设计了列车群在线协同优化算法,实现了列车群运行轨迹的动态调整,最后采用武广高速铁路实际数据进行了仿真验证。研究结果表明:提出的在线协同优化算法可以有效提升最优解搜索能力,避免Pareto最优解集的频繁更新,在不同干扰场景下算法触发频率平均降低36.7%;在试验设计的一般干扰场景中,优化后的动态调整策略在保证列车群安全平稳运行的同时,将受扰列车的延误度由6.2%降至0,与立即恢复延误策略相比,节能率达4.8%;在试验设计的较大干扰场景中,受扰列车的延误度由13.1%降至1.4%,全局时间偏差恢复为0,节能率达1.8%。可见,提出的方法能够解决运行轨迹静态规划方式无法完全适应外部动态环境变化的问题,有效保障干扰情况下列车运行复合紊态的及时恢复。   相似文献   

11.
列车实时运行调整与运行控制是实现高速列车准点节能运行的两个重要方面.本文构建高速列车运行调整与运行控制一体化优化模型,以降低列车总延误时间与运行能耗为目标,同时优化列车速度距离与时间距离曲线.与以往研究将列车运行调整与运行控制独立优化不同,本文基于列车牵引计算,通过锁闭时间理论将列车运行调整与控制的解空间进行耦合,根据列车运行速度、制动性能、信号系统的清空与开放时间、轨道区段/闭塞分区的长度等因素,精细化计算列车占用不同轨道区段/闭塞分区的时间,动态确定列车区间运行时分与追踪间隔.为求解复杂的非线性模型,设计分段近似法将非线性约束进行重构,从而将非线性优化模型转变为混合整数规划模型.通过算例计算,给出双目标问题的帕累托解集,与单目标优化方法对比,本文方法可以减少总能耗2.46%,降低运行总延误7.33%.  相似文献   

12.
依靠缩短登机时间提升登机效率是降低航空周转成本的重要手段之一。乘客登机时间由登机策略及个体行为等因素共同决定。在采用特定登机策略登机过程中,发生阻塞导致队列行进缓慢时,队列内的乘客可能采取超越行为提升自身行进速度,从而影响登机效率。针对乘客这种超越行为建立微观仿真模型,采用元胞自动机模拟不同登机策略下的乘客登机过程,比较超越行为对不同登机策略效率的影响程度,量化考虑乘客超越行为时登机乘客携带行李比例、登机放行间隔,以及客座率等情景下登机策略的效率。结果表明:在考虑超越行为后,原本不考虑超越行为时登机时间越长策略的登机时间缩减比例越高,乘客行走干扰延误的降低是登机时间缩减的主要原因。在乘客携带行李数量较多或乘客放行间隔较短的情景下,从靠窗到过道依次登机策略的效率优于倒金字塔式策略;在客座率70%的情景下,分4种次序从后到前登机的策略是按列次序登机的最佳策略。  相似文献   

13.
为确保通信延时条件下协同式自适应巡航控制(CACC)系统的弦稳定性,利用模型预测控制(MPC)和长短期记忆(LSTM)预测方法,研究CACC系统中车辆协同控制下的通信延时补偿方法;基于车辆队列四元素架构理论,构建了包括车辆动力学模型、间距策略、网络拓扑和MPC纵向控制器的系统模型,并综合考虑2范数和无穷范数弦稳定性条件,提出了CACC车辆队列混合范数弦稳定性量化指标,最终形成协同式车辆队列建模与评价体系;设计了一种利用前车加速度轨迹(PVAT)作为开环优化参考轨迹的MPC方法,即MPC-PVAT,通过综合考虑队列的跟驰、安全、通行效率和燃油消耗等性能指标,使目标函数趋于最小代价,从而得到当前时刻的最优控制量,并利用庞特里亚金最大值原理对所设计的优化问题进行快速求解;在MPC-PVAT基础上,提出一种基于长短期记忆(LSTM)网络的通信延时补偿方法,即MPC-LSTM,将跟驰车辆的传感器信息输入LSTM网络来预测其前车的运动状态,从而缓解短暂通信延时对车辆队列稳定性的影响。仿真测试结果表明:MPC-LSTM可容忍的通信延时上界大于1.5 s,比MPC-PVAT提升了0.8 s,比线性控制器提升了1.1 s;在基于实车数据测试中,当通信延时增加到1.2 s时,MPC-LSTM的弦稳定性指标相比MPC-PVAT提升了20.33%,与线性控制器相比稳定性提升了39.35%。可见,在通信延时较大的情况下,MPC-LSTM对通信延时具有很好的容忍性,从而有效地保证了CACC车辆队列的弦稳定性。   相似文献   

14.
城市轨道交通列车控制仿真模型研究   总被引:1,自引:0,他引:1  
列车运行控制系统的应用,有效地提高了城市轨道交通的运行效率.由于缺乏相关的技术参数,应用传统牵引计算理论方法的列车运行控制仿真系统,若未充分考虑系统控车的特性,在工程应用中控制的精度将无法保证.本文着重考虑信号系统工程设计的限制条件,将列车的加减速性能和速度控制策略作为主要研究对象,构建基于能量守恒原理和信号控制条件的列车速度控制仿真模型.在此基础上设计仿真模型,实现所需要的系统功能结构和仿真流程,并开发形成软件系统.在实际运行线路案例研究中,与采用通用列车运行仿真系统获得的结果比较,验证本文所建仿真模型的精度和工程适用性.  相似文献   

15.
在分析高速铁路列车运行调整问题及策略优化思想的基础上,以列车加权总晚点时间最小为目标,考虑列车运行时分、车站间隔时间等约束,建立了高速铁路列车运行调整策略优化模型.针对不同适用情况,提出三种基础调整策略,构建情景-策略匹配表,并基于极大加代数的时刻表递推思路,运用C#软件进行求解.最后以京广高铁区段为例,随机假设晚点情景,分析调整结果 .优化后策略匹配度为100%,晚点时间平均减少24.07 min,晚点幅度降低4.2%~53.5%,求解效率显著提升,验证了模型和算法的有效性.  相似文献   

16.
在轨道交通系统中,列车的运行控制系统是确保列车运行安全和提高列车运行效率的核心子系统。列车运行机理的分析,列车追踪模型和算法的建立,是开发列车运行控制系统的基础。本文根据地铁列车追踪运行的特点,建立了固定自动闭塞系统下的元胞自动机模型,并对北京地铁2号线进行了模拟仿真。通过时空图和速度—时间—位移图,我们研究和探讨了地铁列车追踪运行的一些主要特性,分析了速度、时间、位置之间的相互变化。模拟结果再现了地铁列车运行时列车流的动态特性。通过对比分析模拟结果和实际运行结果发现,所提出的模型是一种有效的模型,可以很好地用来描述地铁中列车运行的特点。  相似文献   

17.
电力牵引列车运行计算机模拟系统是模拟一组电力牵引列车在给定线路下的运行情况,进而研究列车在运动时的速度、电流和电压变化情况以及对动力网络的需求与作用,现介绍该模拟软件包的主体结构、模拟模型与控制策略,如线路拓扑结构,列车运行模型、ATP和ATO控制策略以及电力网模型。  相似文献   

18.
针对货运列车在长大下坡道空气制动无法恒速且相邻两次空气制动之间需满足缓解再充风约束的特点,以司机实际操纵中普遍采用的50 k Pa小减压量调速制动为依据,根据列车牵引计算原理和能耗分析方法,建立了考虑再生制动能量利用的货运列车最优控制模型.首先,研究了货运列车在长大下坡道上的最优操纵策略和站间各子区间运行时间分配;其次,基于极大值原理分析了"全电制-全制-全电制"周期性制动控制策略的最优性,以及列车入坡、出坡应满足的必要条件,提出长大下坡道及其相邻区间列车运行最优控制的数值求解算法;最后,以HXD2型电力机车牵引100节C80重车为例,对提出的列车最优控制模型和数值算法进行仿真验证,并分别与模糊预测控制和实测数据进行比较,研究结果表明:在准点的前提下,所采用的周期性制动策略能实现5.6%和17.9%节能效果.  相似文献   

19.
为了使高铁列车开行方案与旅客时变需求相吻合,引入列车运行方案图,使列 车开行方案优化中既能利用列车运行的时间信息,又能避免结合列车运行图综合优化的 大规模计算.借助于基于时刻表的高铁客流分配方法,在区间通过能力、车站始发能力、列 车载客能力等多种约束下,以列车运行时间与旅客出行时间加权和为优化目标,构建了 时变需求下高铁列车开行方案优化的Stackelberg 博弈模型.利用降低编组、删除列车、添 加列车、拼接列车、提高编组和调整列车始发时间等邻域搜索策略,设计了求解模型的模 拟退火算法.最后,针对京沪高速铁路进行算例分析,优化产生的列车开行方案具有良好 的评价指标,特别是旅客上车时间与计划出发时间的偏差较小,具有较高的运算效率和 收敛性.  相似文献   

20.
针对高速列车在外部干扰下的速度控制问题,本文提出基于Koopman算子的高速列车高维线性模型的建模方法,并设计一种结合扩张状态观测器(ESO)与基于Koopman算子的模型预测控制(K-MPC)的复合控制器(ESO-K-MPC)。利用扩展动态模式分解算法来近似无限维线性Koopman算子,建立具有动态非线性特性的高速列车动力学高维线性模型;引入模型预测控制,设计扩张状态观测器,对系统总扰动进行估计与补偿,构建基于ESO-K-MPC的高速列车速度控制系统,再设计控制器与控制算法;结合CRH3列车参数和郑西高铁华山北站—西安北站实际线路数据,分别在没有扰动和白噪声干扰下对设计的控制方法与算法进行仿真研究。仿真结果表明:基于Koopman的高速列车建模对位移与速度的预测精度相比于线性状态空间模型分别提高了83.86%与87.40%;ESO-K-MPC可以准确估计与补偿高速列车运行中受到的干扰,控制输出曲线与期望曲线几乎重叠,实现了列车运行期望曲线的高精度跟踪。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号