首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 734 毫秒
1.
船体板在波浪载荷下会受到交变拉/压作用,因此必须考虑疲劳对船体板剩余寿命的影响,尤其是对含点腐蚀船体板剩余寿命的影响。本文对单点腐蚀船体板剩余疲劳寿命进行了数值计算,结果表明:使用二次单元对含蚀坑船体板应力集中系数的计算误差不超过10%,而使用线性单元误差可达40%;蚀坑直径对单点腐蚀船体板疲劳寿命的影响不大,而船体板剩余疲劳寿命随蚀坑深度的增大而迅速减小。可见,对于点腐蚀钢板的应力集中计算,使用而二次单元比使用线性单元更准确;蚀坑深度对单点腐蚀船体板剩余疲劳寿命的影响比蚀坑直径的影响更为显著。  相似文献   

2.
杜晶晶  杨平  崔冲  夏添 《船舶工程》2016,38(9):89-94
本文着眼于老龄化船舶结构上的局部点状腐蚀和整体点状腐蚀,利用非线性有限元软件分析了超过100个船体板结构的极限强度。研究了蚀坑形状、蚀坑位置、蚀坑大小、蚀坑深度和板的柔度对含局部点状腐蚀船体板的极限强度的影响,蚀坑分布、板的柔度和腐蚀体积对含点状腐蚀船体板的极限强度的影响。拟合出了单面、双面局部点状腐蚀下的船体板极限强度折减公式,单面、双面点状腐蚀下的船体板极限强度折减公式。并得到同时适用于局部和整体点状腐蚀板极限强度的公式。  相似文献   

3.
针对疲劳现象对点腐蚀极为敏感的问题,基于点腐蚀蚀坑处的应力集中系数,计算了含点腐蚀船体板单元的疲劳寿命。结果发现:对于半球形蚀坑,蚀坑处应力集中系数随蚀坑深度的增加而增大,两者基本上呈线性关系;当蚀坑深度为0,即无点腐蚀时,累积损伤度约为1,结构的疲劳寿命约等于设计寿命,这与客观事实是相符的,验证了基于应力集中系数计算结构疲劳寿命的合理性;当蚀坑深度仅为0. 2倍板厚时,含2种蚀坑的板单元疲劳寿命迅速减小到原寿命的47%、9%和23%;当蚀坑深度达到板厚时,板单元被蚀穿。这一结果说明结构的疲劳寿命随蚀坑深度的增大急剧减小,结构的疲劳寿命对点腐蚀极为敏感。  相似文献   

4.
《舰船科学技术》2015,(12):23-26
为研究双点腐蚀蚀坑的船外板孔边处的应力集中,以半球形蚀坑为例,建立含半球形蚀坑的船外板有限元模型,对蚀坑大小、蚀坑间距及排列方式对应力集中的影响进行数值计算。研究表明,当蚀坑垂直载荷方向分布时,则孔边应力集中随两孔间距的增大而增大,当2个蚀孔相切时,孔边应力集中达到最大,而后应力集中随蚀坑间距的增大而减小,当蚀坑间距大于3倍蚀坑半径时,2个蚀坑之间的相互影响可忽略不计;当蚀孔平行载荷方向分布时,孔边应力集中大体随蚀坑间距的增大而增大。当蚀坑间距大于5倍半径时,2个蚀坑之间的相互影响可以忽略不计。该研究可为考虑腐蚀的老龄舰艇强度计算提供参考。  相似文献   

5.
基于实船点蚀损伤勘验数据,通过有限元数值计算法分析了点蚀分布、深度和面积等点蚀特征参数对船体加筋板极限强度的影响规律,给出了以点蚀深度和点蚀面积双参数的点蚀加筋板极限强度公式。结果表明:在点蚀不穿孔且点蚀面积低于10%条件下,当点蚀面积和点蚀深度一定时,蚀点分布造成的船体加筋板极限强度最大波动值低于2%;点蚀面积和点蚀深度对加筋板极限强度的影响是交互非独立的;基于点蚀面积、深度给出的双参数加筋板极限强度计算公式计算精度较高,满足工程需要。  相似文献   

6.
考虑到在双轴压应力状态下,点蚀对船体板、加筋板的极限强度影响规律尚不明确,对3种典型的船体加筋板采用有限元法计算分析双轴压缩工况下点蚀特征参数(分布、密度、深度,以及半径)对加筋板极限强度的影响规律,结果表明,点蚀分布对加筋板极限强度影响较小;点蚀密度对极限强度的影响与点蚀面积有关;在蚀点总体积一定的条件下,点蚀深度和半径对加筋板极限强度的影响甚微,蚀点总体积是衡量点蚀加筋板极限强度较为合理的参数。  相似文献   

7.
建立了坑点腐蚀壳板的分层模型(腐蚀层+完好层),求出了腐蚀层的等效材料常数(等效弹性模量和等效泊松比)。开展了坑点腐蚀的应力集中分析,坑点腐蚀壳板的应力集中可分为薄膜应力集中和弯曲应力集中。以超参数壳元为基础推导了坑点腐蚀壳体单元,导出了坑点腐蚀壳体单元的刚度矩阵和等效结点载荷向量的有限元表达格式,单元刚度矩阵通过沿壳体厚度方向的分段积分求得,在积分时腐蚀层的材料常数取力学等效的材料常数,在计算单元等效结点载荷向量时考虑了由腐蚀引起的偏心载荷,在求解单元应力时考虑了坑点腐蚀应力集中的影响,并对应力进行了相应修正。  相似文献   

8.
含坑点腐蚀的壳体有限元方法   总被引:1,自引:0,他引:1  
徐强  万正权 《船舶力学》2010,14(1):84-93
建立了坑点腐蚀壳板的分层模型(腐蚀层+完好层),求出了腐蚀层的等效材料常数(等效弹性模量和等效泊松比).开展了坑点腐蚀的应力集中分析,坑点腐蚀壳板的应力集中可分为薄膜应力集中和弯曲应力集中.以超参数壳元为基础推导了坑点腐蚀壳体单元,导出了坑点腐蚀壳体单元的刚度矩阵和等效结点载荷向量的有限元表达格式,单元刚度矩阵通过沿壳体厚度方向的分段积分求得,在积分时腐蚀层的材料常数取力学等效的材料常数,在计算单元等效结点载荷向量时考虑了由腐蚀引起的偏心载荷,在求解单元应力时考虑了坑点腐蚀应力集中的影响,并对应力进行了相应修正.  相似文献   

9.
点蚀损伤常发生于船体结构,将会造成结构的局部缺失而影响船舶结构的安全性.针对船体结构的基本构件加筋板,采用非线性有限元法研究轴向压力下点蚀损伤对其极限强度的影响,考虑点蚀位置、直径、数目、深度、点蚀损失体积等影响因素,分析船体加筋板极限应力和屈曲失效模式,获得结构的极限强度,拟合影响因素和加筋板极限强度的关系曲线,定性分析了点蚀损伤对加筋板的破坏.结果表明,点蚀损伤削减了加筋板极限强度;点蚀影响因素(点蚀直径、数目、深度、损失体积)对含点蚀损伤加筋板极限强度的影响近似呈现非线性的二次单调函数关系.  相似文献   

10.
针对老龄化船舶结构上的点状腐蚀,利用非线性有限元方法进行计算,分析304个船体加筋板的极限强度,探讨带板柔度、加强筋柔度、腐蚀面积比和腐蚀深度比对纵向压力下含点蚀损伤船体加筋板极限强度的影响,拟合出点状腐蚀下船体加筋板极限强度折减公式并对其适用性进行验证,研究结果具有一定的工程参考意义和价值。  相似文献   

11.
《Marine Structures》2007,20(1-2):100-114
Over the past decades there have been many losses of the merchant vessels due to either accidents or exposure to large environmentally induced forces. The potential for the structural capability-degrading effects of both corrosion and fatigue induced cracks are of profound importance and must be both fully understood and reflected in vessel's inspection and maintenance programme. The present study is focused on assessing the effects of localized pitting corrosion which concentrates at one or several possibly large area on the ultimate strength of unstiffened plates. Over 256 nonlinear finite element analyses (FEA) of panels with various locations and sizes of pitting corrosion have been carried out. The multi-variable regression method is applied to derive new formulae to predict ultimate strength of unstiffened plates with localized corrosion. The results indicate that the length, breadth and depth of pit corrosion have weakening effects on the ultimate strength of the plates while plate slenderness has only marginal effect on strength reduction. Transverse location of pit corrosion is also an important factor determining the amount of strength reduction. When corrosion spreads transversely on both edges, it has the most deteriorating effect on strength. It was also found out that the proposed formulae can accurately predict the ultimate strength of unstiffened plate with localized corrosion.  相似文献   

12.
Pitting corrosion is typical corrosion observed on coated hold frames of bulk carriers which exclusively carry coal and iron ore. In order to secure the safety of these types of bulk carriers, it is important to understand the effect of pitting corrosion on local strength of hold frames.

In order to investigate this effect, a series of 4- and 3-point bend tests on structural models which consist of web, shell and face plates has been carried out. Artificial pitting was created on the web plate to simulate pitting. In the 4-point bend tests, two equal concentrated loads have been applied vertically at the one-third points of simply supported models so that compression load due to bending would act on the face plate. In this testing condition, lateral-distortional buckling occurred before reaching the ultimate strength and local buckling of the face plate was observed after reaching the ultimate strength. The effect of web plate pitting on the lateral-distortional buckling strength was found to be small but the ultimate strength decreases with increase in the degree of pitting intensity. In the 3-point bend tests, concentrated load has been applied vertically at the center of simply supported models so that compression load due to bending would act on the face plate. In this testing condition, local face buckling occurred just after reaching the ultimate strength. The ultimate strength is found to be decreasing with increase in the degree of pitting intensity.

A series of non-linear FE analyses has been performed to simulate the deformation behavior observed in the tests. It has been revealed that even in the case of randomly distributed pitting corrosion the ultimate strength of the structural models was almost the same as that of the structural models with uniform corrosion corresponding to the average thickness loss.  相似文献   


13.
《Marine Structures》2004,17(5):403-432
Firstly, pitting corrosion observed on hold frames in way of cargo holds of bulk carriers which exclusively carry coal and iron ore has been investigated in detail. It was shown that the shape of the corrosion pits observed on them is a circular cone and the ratio of the diameter to the depth is in the range between 8 to 1 and 10 to 1, which is different from the trend observed for the bottom shell of the oil tanker where the ratio is in the range between 4 to 1 and 6 to1.Secondly, a series of tensile tests has been conducted to investigate the effect of pitting corrosion on tensile strength of members. It was pointed out that the tensile strength decreases gradually and the total elongation decreases drastically with the increase of the thickness loss due to pitting corrosion. The reduction of the tensile strength of the members with pitting corrosion is larger than that of members with uniform thickness loss in terms of average thickness loss.Thirdly, a series of compressive buckling tests has been performed to examine the influence of pitting corrosion on buckling behavior of members. It was found that compressive buckling strength of pitted members is smaller than or equal to that of members with uniform thickness loss in terms of average thickness loss.Finally, an elasto-plastic analysis by FEM has been carried out to simulate the compressive buckling test in order to validate the method of modeling members with pitting corrosion. An attempt has been made to simulate the compressive buckling behavior of pitted members using shell elements of which meshing size is almost the same as the original thickness of the pitted plate.  相似文献   

14.
文章提出了可以计及局部腐蚀损伤影响的等效层合单元方法,建立了局部腐蚀等效弹性模量计算公式,针对耐压壳体局部腐蚀深度、腐蚀强度、腐蚀范围和初挠度进行了系列稳定性数值计算,通过计算结果的对比分析提出了将局部腐蚀等效为附加多波挠度的稳定性近似计算方法,给出了附加挠度幅值的计算公式,可用于耐压壳体局部腐蚀的稳定性分析。  相似文献   

15.
The objective of this study was to estimate the strength and deformability of corroded steel plates under quasi-static uniaxial tension. In order to accurately simulate this problem, we first estimated the true stress–strain relationship of a flat steel plate by introducing a vision sensor system to the deformation measurements in tensile tests. The measured true stress–stain relationship was then applied to a series of nonlinear implicit three-dimensional finite element analyses using commercial code LS-DYNA. The strength and deformability of steel plates with various pit sizes, degrees of pitting intensity, and general corrosion were estimated both experimentally and numerically. The failure strain in relation to the finite element mesh size used in the analyses was clarified. Two different steels having yield ratios of 0.657 and 0.841 were prepared to examine the material effects on corrosion damage. The strength and deformability did not show a clear dependence on the yield ratios of the present two materials, whereas a clear dependence was shown with respect to the surface configuration such as the minimum cross-sectional area of the specimens, the maximum depth of the pit cusp from the mean corrosion diminution level, and pitting patterns. Empirical formulae for the reduction of deformability and the reduction of energy absorption of pitted plates were proposed which may be useful in strength assessment when examining the structural integrity of aged corroded structures.  相似文献   

16.
The paper focuses on the assessment of the hull girder ultimate strength,combined with random pitting corrosion wastage,by the incremental-iterative method.After a brief review about the state of art,the local ultimate strength of pitted platings under uniaxial compression is preliminarily outlined and subsequently a closed-form design formula is endorsed in the Rule incremental-iterative method,to account for pitting corrosion wastage in the hull girder ultimate strength check.The ISSC bulk carrier is assumed as reference ship in a benchmark study,devoted to test the effectiveness of the incremental-iterative method,by a comparative analysis with a set of FE simulations,performed by Ansys Mechanical APDL.Four reference cases,with different locations of pitting corrosion wastage,are investigated focusing on nine combinations of pitting and corrosion intensity degrees.Finally,a comparative analysis between the hull girder ultimate strength,combined with pitting corrosion wastage,and the relevant values,complying with the Rule net scantling approach,is performed.Based on current results,the modified incremental-iterative method allows efficiently assessing the hull girder ultimate strength,combined with pitting corrosion wastage,so revealing useful both in the design process of new vessels and in the structural health monitoring of aged ships.  相似文献   

17.
对于含坑点腐蚀等局部缺陷的球壳结构,由于结构的不连续性以及缺陷部位应力状态的三维特性,因此很难用传统的连续介质理论及板壳理论进行求解。为了对含坑点腐蚀的球壳的强度、稳定性进行精确分析,文中分别采用坑点腐蚀壳体单元(Pitting Corrosive Shell Element,PCSE)、基于多点约束(Multipoint Constraint,MPC)的壳体单元-实体单元集成以及实体单元三种方法进行对比计算,对比结果表明,采用PCSE方法的计算效率最高,且计算结果的精度满足工程应用要求。最后,基于PCSE方法并通过方差分析,讨论了坑点腐蚀对球壳强度及稳定性的影响。  相似文献   

18.
腐蚀是导致老龄船舶结构失效的主要原因之一。结合基本点蚀原理,文章对碳钢、低合金钢海水全浸没点蚀的主要影响因素、具体点蚀进程做了简要解释与评述。基于Melchers点蚀深度模型及其相关实验数据,文中提出一种简化形式的新型点蚀最大深度模型,并采用该模型对三组我国船舶结构常用碳钢、低合金钢的青岛海域全浸没点蚀试验观测数据进行分析。通过对比验证,证明采用Weibull函数表示点蚀最大深度随时间变化关系是合适的。此外,依据青岛、厦门、榆林海域碳钢试验数据,文中还对海水环境因素,如:溶解氧浓度、平均温度、盐度、PH值等,以及钢材成分变化对新型最大点蚀深度模型各参数的影响进行了初步探讨,得出了相应的函数关系式及相关结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号