首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
轨道不平顺是引起车辆振动的主要激励源。深入分析轨道高低不平顺与车体垂向加速度关联关系动态,掌握轨道结构传递特性,对科学评价车辆、轨道的服役状态及精准指导线路养护维修具有重要意义。基于系统辨识理论,以我国高速综合检测列车车载检测系统在一高速铁路上的实测轨道不平顺及车体垂向加速度样本数据为基础,通过平均周期图谱法计算检测数据功率谱密度及其相干函数,用状态空间方法构建长波轨道高低不平顺与车体垂向加速度之间的传递模型,并用关联模型传递函数及实测数据对所建模型进行验证。结果表明:模型预测的车体垂向加速度与相应实测数据有较强的线性相关性;利用合理阶数的状态空间模型,能够有效辨识长波轨道高低不平顺与车体垂向加速度之间的传递关系。  相似文献   

2.
轨道不平顺谱是表征轨道不平顺幅频特性的有效工具。目前,高速铁路轨道不平顺谱的研究主要聚焦在波长2 m及以上成分,甚少涉及轨面短波不平顺谱。基于大量无砟轨道高速铁路实测数据,研究轨面短波不平顺谱的表达函数及其与中长波轨道不平顺谱衔接的适应性。结果表明:两段幂函数能够很好地表征轨面短波不平顺谱。采用对数坐标系下的5阶多项式拟合全波段高低不平顺谱,实现中长波和短波成分在波长1~2 m范围内的平缓过渡。实测数据表明高速行车条件下,短波高低不平顺对轮轨垂向力及轴箱、构架和车体垂向加速度等指标均存在显著影响,全波段高低不平顺谱的建立对轮轨振动仿真分析、车辆和轨道结构设计以及轨道状态评估具有重要意义。  相似文献   

3.
高效且准确地对长波轨道不平顺进行监测是轨道几何测量领域的难点。分析两类惯性基准动态检测方法的测量误差来源,认为转向架与轨道间的“冲角”是造成长波不平顺测量精度损失的重要因素;为此,重新设计检测系统硬件结构,引入点头陀螺仪传感器和测距组件,在轨道平面建立“短弦”测量模型,推导基于误差状态扩展卡尔曼滤波估计的俯仰轨道倾角测量算法;通过补偿滤波与空间域积分等信号处理方法,计算长波高低轨道不平顺。现场试验表明:该方法有效复原7~200 m以内的长波高低不平顺;当截止波长为200 m时,相比传统的惯性基准法,平均精度增加了81%~88%,且受检测速度影响小;统计系统重复检测误差的95%分位数在1.5 mm以内,在大跨度桥梁形变与路基沉降监测等领域具有较好的应用前景。  相似文献   

4.
轨道车辆动力学性能仿真用轨道谱的研究   总被引:1,自引:0,他引:1  
利用国内外实测轨道不平顺归纳出的轨道谱公式进行数值反演,重新得到的时域历程是开展车辆动力学性能研究,进行轨道车辆动态仿真、实车激振试验的重要输入。分析了几种反演的轨道不平顺信号,发现某些时域信号存在着明显的周期性和空白频段现象。采用基于功率谱的白噪声窗口式滤波法生成的轨道不平顺较好地避免了以上问题,生成的轨道不平顺时域信号用于轨道车辆运行时的动力学性能仿真,结果与试验数据有较好的一致,表明该反演方法得到的轨道不平顺在动力学仿真计算中具有较好的适用性。  相似文献   

5.
不同截止频率下轨道不平顺对车辆垂向振动的影响   总被引:1,自引:0,他引:1  
魏冲锋  罗世辉  孟政  吴庆 《铁道车辆》2011,49(12):5-7,1
为研究地铁车辆在不同波长不平顺轨道上的乘坐舒适性,通过模拟轨道不平顺的时域样本,分析了不同截止频率下轨道不平顺样本对车辆垂向振动的影响,得出了轨道不平顺频率或波长对地铁车辆运行舒适性的影响及规律.结果表明,从抑制车体垂向振动的角度出发,应严格控制10 m~30 m波长的轨道不平顺.  相似文献   

6.
基于轨道不平顺输入与车辆动力学响应输出之间的频域传递特性分析,研究快速确定与车辆系统对应的轨道不平顺敏感波长的新方法.利用该方法分析某型高速车辆所对应的轨道不平顺敏感波长的结果表明:在300~360 km· h-1速度范围内,8m的多波周期轨道垂向不平顺波长会引起高速车辆较大的垂向响应;37m左右的多波周期轨道横向不平顺波长会引起高速车辆较大的横向响应.应用短时傅里叶变换和小波包分析技术这2种非稳态振动信号分析方法对车辆系统的车体垂向加速度进行特征分析,可以较全面地揭示出其时频特性,从而能够间接分析出与车辆振动响应信号相关联的轨道不平顺输入信号的非稳态特性.  相似文献   

7.
应用车辆-轨道耦合动力学理论和平稳随机过程理论,借助车辆-轨道垂向耦合频域分析模型,以轨道高低不平顺谱为输入激励,提出基于车辆垂向舒适性指标(车体加速度和 Sperling 指标)估计高低不平顺谱限值的方法。以我国武广客运专线及德国低干扰轨道高低不平顺谱为例,对350 km/h行车速度时的谱限值进行了估计。通过对比时域、频域模型计算结果,对所估计谱限值进行了校核,校核分析结果表明,频域模型计算结果与时域结果吻合较好,说明了所估计谱限值的合理性。分析方法及研究结果可为高速铁路轨道不平顺管理提供参考。  相似文献   

8.
房建  雷晓燕  练松良  刘林芽 《铁道工程学报》2011,(5):45-46,48,50,85
研究目的:本文旨在通过现场实测和仿真计算研究曲线轨道不平顺对车辆动力特性的影响。首先,利用轨检车实测数据对我国提速线路轨道不平顺与车辆振动加速度之间的关系等进行了统计分析及相关分析,对武九线曲线段的轨道谱也进行了初步估计。其次,采用动力学仿真软件Adams/Rail建立车辆-轨道动力学模型,并以实测数据作为验证手段,分析了轨道不平顺类型、幅值和波长对车辆运行平稳性和安全性的影响,提出了对行车运行有不利影响的不平顺波长范围。研究结论:高低不平顺对列车垂向振动影响显著,轨向不平顺对列车垂向、横向振动均有显著影响,当列车以110 km/h运行时,为了避免列车在不平顺激励下产生共振,应该对2.5 m、3.72 m、20 m和28 m波长的轨道不平顺进行控制。  相似文献   

9.
现有高速铁路轨道长波不平顺静态检测主要采用矢距差法或简化矢距差法,存在与检测起点相关、含有里程相位差、基础变形时检测幅值偏大、与车体振动加速度匹配性较差等缺点。利用中点弦测法对轨道长波不平顺进行静态检测,通过对中点弦测法不同测弦长度有效测量波长范围和列车敏感波长分析,采用60 m测弦长度的中点弦测法最适合时速300~350 km运营期高速铁路;利用车辆-轨道动力学仿真分析和最小二乘法拟合相结合方法,提出运营期高速铁路300及350 km·h^-1速度下的轨道长波高低不平顺控制标准,并进行实例验证。结果表明:60 m弦中点弦测法既可保证轨道长波不平顺检测的准确性,又能很好地体现车体振动响应;时速300 km运营期高速铁路轨道长波高低不平顺3级控制标准建议值分别为9,15,21 mm;时速350 km分别为7,11,15 mm。  相似文献   

10.
轨道不平顺是车辆振动的主要激励源,随着车辆运营速度的增加,引起车辆振动加剧的不利波长也在变化。本文利用谱分析方法对0号高速综合检测列车实测数据进行分析,得到高速条件下长波高低不平顺和车体垂向加速度在空间频域上的分布规律,分别采用非参数模型和ARX模型构建长波高低不平顺与车体垂向加速度之间的关联关系,并利用系统辨识技术对两种模型的传递函数进行估计。通过将两种关联模型分别与长波高低不平顺结合,实现车体垂向加速度的预测;并与实测车体垂向加速度进行相关性和相干性分析。结果表明,两种模型均能较好反映长波高低不平顺与车体垂向加速度之间的传递关系。通过比较,ARX模型比非参数模型更精确。  相似文献   

11.
通过MATLAB软件模拟交点型不平顺,作为机车模型的外部激扰输入,根据机车车辆动力学理论,以机车动力学指标为依据,运用SIMPACK多体动力学仿真软件,分析了轨道随机不平顺及具有连续波数的交点型不平顺对机车运行安全性及平稳性的影响。仿真结果表明,在轨道交点型不平顺幅值和波长一定的情况下,轨道交点型不平顺的波数越多,对机车运行安全性和平稳性的影响就越大,并且都大于仅有随机不平顺激扰的情况。机车速度为160 km/h,在轨道含有连续三波交点型不平顺情况下,轮重减载率为0.685,超过了评定标准的限值0.65,因此,必须对轨道交点型不平顺的波数加以控制,或严格限制车速。  相似文献   

12.
基于车辆-轨道耦合动力学理论,结合我国高速铁路轨道不平顺的管理模式,提出利用高速铁路轨道不平顺谱进行不同管理等级轨道不平顺限值估算的方法。以中国高速铁路无砟轨道不平顺谱激扰作用下中国典型高速车辆在板式无砟轨道上运行为例,进行350km/h行车速度条件下轨道高低、轨向、水平、轨距不平顺各管理等级(Ⅰ~Ⅳ级)对应限值的估算,并与传统单一谐波(波长为10、40m)激扰作用下计算获得的限值和国内外高速铁路轨道不平顺标准对比分析。结果表明,采用本文所提的限值估算方法,以包含多种波长成分的随机不平顺作为输入激扰,相比单一谐波的计算方式考虑更为全面,可反映轨道不平顺各波长成分对行车品质的共同作用;相比国内外高速铁路轨道不平顺标准,在本文仿真计算条件下,利用高速铁路轨道不平顺谱估算的各管理等级轨道不平顺限值总体居于国内外标准之间。因此,本文利用高速铁路轨道不平顺谱进行轨道不平顺限值估算的方法是可行的,为采用动力学仿真手段获取轨道不平顺理论限值提供了一种新途径。  相似文献   

13.
基于经验模式分解的钢轨波浪弯曲不平顺提取方法   总被引:5,自引:3,他引:2  
钢轨波浪弯曲不平顺隐藏在轨道不平顺中。采用小波分析和经验模式分解相结合的方法,对钢轨波浪弯曲不平顺进行识别和提取分析。利用对称双正交小波对轨检车监测到的车体垂向加速度响应和高低轨道不平顺信号进行小波变换,滤除波长1 m以下成分后,基本可以保证用经验模式分解得到的第1个固有模态函数包含全部钢轨弯曲不平顺信息。对提取得到的钢轨波浪弯曲不平顺的分析表明,不同钢轨上存在的弯曲不平顺不同,钢轨存在的波浪弯曲不平顺是波长在3 m附近变化的准周期不平顺;钢轨波浪弯曲不平顺是引起车体颤振的原因。建议在提速线路和客运专线上应限制波浪弯曲钢轨上道。  相似文献   

14.
基于概率分布的轨道不平顺发展统计预测   总被引:1,自引:0,他引:1  
针对轨道不平顺的随机性,应用数理统计原理和方法,对轨道动态不平顺检测数据进行统计分析,研究轨道不平顺的概率分布特性。分析讨论基于不平顺分布函数特征的不平顺发展统计预测方法,比较不同统计预测模型的预测效果和预测精度。研究结果表明:轨道不平顺概率分布接近于正态分布;在轨道不平顺概率分布特性分析的基础上,指数平滑预测方法具有较好的预测效果和预测精度,能够用于轨道不平顺发展预测问题的研究。  相似文献   

15.
线路不平顺对低速磁浮车辆动态响应的影响   总被引:3,自引:0,他引:3  
线路不平顺与磁浮车辆的动力学性能密切相关,良好的线路状况是车辆稳定、舒适运行的保证。参考各国高速铁路对轨道梁刚度的要求,并考虑轨道梁的动力学特性要求,给出了磁浮列车线路不平顺的具体型式及变量限值,着重分析了线路不平顺的频率对车辆垂向响应的影响。分析结果进一步验证了悬浮控制器的设计思想,即在高频时,应保证列车具有良好的平稳性,而低频时,应与轨道具有良好的跟随性。这些分析结果为以后进一步的研究奠定了基础。  相似文献   

16.
基于现代信号处理中谱分析理论,通过对采集的接触网相关数据进行统计分析,建立合适的接触网线谱作为衡量接触线不平顺状态的参考足一种新的思路.通过对国内外研究现状及发展动态进行分析,提出电气化铁路接触网线谱概念,阐述了构建线谱的意义,最后对其相关研究内容进行了论述.  相似文献   

17.
上海地处软土地区,基础容易下沉从而造成轨道交通的线路不平顺,引起轨面高低变化,且各点曲率不一.利用三次样条函数,对上海地铁工务分公司测得的线路下沉轨面标高数据进行拟合(测量点间隔为5 m),并用曲率限值、各点垫高量等参数加以控制,对轨面曲率超过限值地段,进行轨面垫高量计算,以提高轨面平顺度.根据钢轨支点间距,进行插值计算,得到每一钢轨支点所需的轨面垫量.  相似文献   

18.
轨道几何不平顺不仅是列车动力响应的主要原因,也是列车运行安全性和平稳性的重要因素。基于SIMPACK多体动力学仿真软件,分析4种基本随机不平顺对高速列车直线运行性能和曲线运行性能的影响,对比不同激励类型下列车的安全性和平稳性指标,并推导出最不利影响激励和线路位置,为现场控制基本轨道不平顺,制定轨道养护维修和不平顺管理标准提供理论依据。分析结果表明:方向和高低随机不平顺分别对列车的横向加速度以及垂向加速度影响较大,轨距随机不平顺对曲线地段列车脱轨系数作用最大,方向随机不平顺对列车在直线和第二段缓和曲线处脱轨系数影响较大,同时在两段缓和曲线处轮重减载率也急剧增大,水平随机不平顺对两个缓和曲线地段处列车的脱轨系数影响较大。  相似文献   

19.
研究目的:自成灌城际铁路开通运营以来,多次轨道动态检测均发现成灌城际铁路桥上存在周期性高低不平顺。为了动态掌握桥上周期性高低不平顺对动车的安全性和舒适性的影响,本文结合统计方法和动力学仿真技术对桥上周期性不平顺的成因和发展规律进行分析。研究结论:分析结果表明,混凝土的收缩、徐变以及桥梁刚度偏弱是产生桥上周期性高低不平顺的主要原因。此外,桥上的32 m波长周期性不平顺恰好落在160 km/h和200 km/h下列车的敏感波长范围内。相同幅值时,200 km/h时垂向加速度响应最大,160 km/h时减载率响应最大,并且高低不平顺幅值为7 mm时垂向加速度已超过0.15g,即超过了垂向加速度Ⅱ级舒适度指标,应当对桥上轨道不平顺进行整治。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号