首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
铝合金船体结构应用带筋板的几个问题   总被引:1,自引:1,他引:0  
阐述应用带筋板的优越性,引荐带筋板的类型及尺寸系列,讨论含有带筋板的船体结构设计几个问题。  相似文献   

2.
阐述应用带筋板的优越性。引荐带筋板的类型及尺寸系列,讨论含有带筋板的船体的结构设计几个问题。  相似文献   

3.
针对新型客滚船上采用的槽型压筋板,利用非线性有限元软件ABAQUS中的risk算法对设置初始压制缺陷的槽型压筋板模型进行受压极限承载力计算。计算发现槽型压筋板中部与焊接扁钢的板边部分所受压屈曲极限承载力不同,因此将槽型压筋板分成2个部分进行研究。通过计算并利用MATLAB对数据回归分析后发现:对于槽型压筋板中间部分,随着槽型间距和压筋板长度的增加,线性屈曲压力减小,受压极限承载力减小,破坏时的最大挠度增加;随着厚度增加,线性屈曲压力和受压极限承载力增加较少,破坏时的最大挠度降低。针对槽型压筋板焊接扁钢的板边部分,缩短板边扁钢与旁边槽型的间距及提高焊接扁钢的腹板厚度均能提高压筋板板边的极限承载压力。设计中可通过在压筋板边焊接扁钢且增加扁钢尺寸或以焊接制造的方式增加槽型高度减小槽型间距,以提高压筋板的极限承载力。  相似文献   

4.
根据CSR高级屈曲分析方法,运用有限元软件ABAQUS,研究削斜筋板架的屈曲能力,计算了5筋板架、小削斜筋板架、削斜筋板架以及4筋板架的屈服强度以及极限强度。结果表明:加强筋削斜后,加筋板屈服强度的下降比极限强度更明显;在纵向载荷条件下,承载能力随着加强筋的削斜而降低,而在横向载荷条件下,其极限强度没有明显下降。  相似文献   

5.
为了计算上层建筑压筋板条的局部振动固有频率,根据典型压筋板条形状特征,推导计算压筋板条面积、惯性矩等剖面属性,将压筋板条当作两端简支梁计算其振动固有频率,避免发生共振。当板格跨度与压筋条间距相比较大时,能满足工程精度要求。采用有限元法预报船舶总振动固有频率和局部强迫振动响应,需要基于剖面特性等效原理,将计算得到的压筋板条剖面特征值等效转换为T型材加筋板,用于有限元建模。通过编写转换程序,从保证振动特性一致性角度考虑,保持转换前后的面积和惯性矩一致,取中和轴高度与原压筋板中和轴高度最接近的T型材作为等效替代。由于压筋板比传统加筋板生产制造更为便利,目前越来越多的大型船舶上层建筑内围壁采用压筋板的型式,研究成果可以为压筋板的设计和振动评估提供参考。  相似文献   

6.
铅酸蓄电池的充放电过程中电流传导主要依靠板栅来完成。板栅的形状、外型尺寸和结构是影响蓄电池性能的重要因素。通过建立铅酸蓄电池单电池的有限元分析模型,分析了板栅的高宽比,极耳的位置,筋条的设计对板栅的电位分布影响,最后得到适当降低板栅的高宽比,极耳的位置向板栅中部移动,增加板栅的竖筋数量有助于降低欧姆压降。  相似文献   

7.
以EPRI断裂分析方法为基础,对符合Ramberg-Osgood应力应变关系的材料,结合筋板相互影响系数,提出一个考虑材料应变硬化性能的船体加筋板弹塑性断裂的J积分计算公式,采用有限元软件ANSYS进行数值模拟,并比较理论计算结果与有限元模拟结果。结果表明:理论计算结果比较接近有限元模拟结果,表明该理论模型能较好地反映加筋板的断裂规律与加筋条的止裂性能,可直接用于加筋板在疲劳载荷作用下的理论分析,对于船体结构弹塑性断裂分析具有重要的参考价值。  相似文献   

8.
梅佳雪  杜尊峰  朱海涛 《船舶工程》2021,43(9):37-42,64
采用非线性有限元软件ABAQUS,应用弧长法对船体内部加筋板进行极限强度影响参数研究.分析不同的初始挠度大小、焊接残余应力大小、模型范围、边界条件、有限元网格尺寸、材料应力应变曲线和侧压力对单轴受压加筋板极限强度的影响.通过对加筋板计算模型的参数进行研究可知,侧压力的存在和结构的初始挠度大小会对加筋板的极限强度产生显著影响,该研究可为加筋板极限强度计算模型的正确选择提供参考.  相似文献   

9.
采用有限元数值计算方法对嵌入式带缆桩典型甲板加强结构尺寸进行计算分析,对比不同连接型式、不同过渡距离等设计方案,计算结果表明,带缆桩加强T型材的腹板高度、面板规格对结构强度影响显著,甲板厚度、带缆桩壁厚等对结构强度影响较小;T型材与带缆桩牢固连接方案较优.  相似文献   

10.
介绍了跳板结构设计过程中的若干要点,以海口—海安线客滚船的跳板为例,对跳板设计过程作了详细说明,并通过规范计算和有限元分析,对跳板进行了结构强度校核。介绍了跳板端部轴销和眼板尺寸的计算方法,并通过有限元分析对复杂形状的眼板进行校核,为跳板结构的安全性和合理性提供理论依据。  相似文献   

11.
李妍  冯成成 《船舶》2015,(Z1):143-151
以3.5万吨散货船实船为例,主要通过SDP规范计算和DSA有限元计算,校核CSR-H对该船结构尺寸和质量的影响。在规范计算方面,主要核算不同工况下的轻货舱、重货舱/风暴压载舱的弯曲强度、剪切强度、极限强度和剩余强度对主要结构尺寸的影响。同时,对重货舱同时兼做风暴压载舱第三货舱的所有区域进行屈服强度评估和屈曲强度评估。  相似文献   

12.
《Marine Structures》2003,16(1):51-67
This paper presents the results of an experimental investigation to determine the torsional ultimate strength of a ship-type hull girder with a large deck opening. Two models with the same dimensions and scantlings were designed to reflect the possible modes of failure under pure torque. A comparison between nonlinear finite element calculations and the experimental results for the two models is presented. The effect of different assumptions and of the variation of different parameters is studied.  相似文献   

13.
陈倩  孙建坤  吴嘉蒙  张帆 《船舶》2015,(Z1):41-49
协调版共同结构规范(CSR-H)对散货船液舱的晃荡强度提出新的要求。针对散货船专用压载舱,通过对晃荡载荷的规范计算,并结合实船统计数据对比,探讨了基于CSR-H的晃荡要求对散货船专用压载舱结构设计的影响,包括有效晃荡长度、有效晃荡宽度和构件尺寸等。  相似文献   

14.
For bulk carriers in hogging, the most critical situation is the alternate hold loading (AHL) condition with odd numbered holds loaded with high density cargoes and even numbered holds empty. The effect of the local lateral pressure loads should be considered in the assessment of ultimate hull girder strength in the hogging and AHL conditions. In the present paper the ultimate strength of a Capesize bulk carrier hull girder under combined global and local loads in the hogging and AHL condition is extensively and systematically investigated using nonlinear finite element (FE) analysis with ABAQUS software. Since the bulk carrier used as a reference vessel in this study is an old design we also studied the effect of modified scantlings by multiplying the plate thickness in the bottom structure by a design modification factor (DMF). In particular, it should be noted that a DMF of 1.4 gives a design in accordance with the new CSR rules. Based on the results obtained by nonlinear FE analyses, a practical interaction equation is established between global hogging bending capacity and average external sea pressure over the bottom.  相似文献   

15.
水下结构设计的主要任务是如何进行结构优化,在保证水下结构安全可靠性的前提下减轻结构的自重.本文根据水下结构强度和稳定性要求,以遗传算法(GA)和可变多面体算法(SM)作为子算法构造了水下结构优化设计的混合优化策略,并应用于圆柱形耐压结构的优化设计,计算结果对于水下结构设计计算具有指导作用.  相似文献   

16.
During their lifetime, marine structures may be exposed to accidental loadings such as from collisions or explosions, as well as environmental loadings such as from slamming, sloshing and green water. Such loadings can cause damage to structures. Therefore, to minimize such damage, advanced and robust design guidelines should be formulated. Among those loads, in this study, explosions imparting an impulsive pressure loading containing a rapid increase in pressure and a short duration that can cause serious casualties, property losses, and marine pollution were considered. In this paper, a practical and robust method for damage assessment of marine structures exposed to explosion loads based on a single degree of freedom (SDOF) system and numerical simulations is proposed. The SDOF method was improved by introduction of new and better idealization resistance for the system and consideration of the effect of strain-rate, and subsequently was verified by a numerical method developed using the commercial ABAQUS software package. The numerical method was itself validated by comparison with relevant pulse pressure test data available in the open literature (good correlation was shown). Based on the validated numerical models, a rigorous parametric study of the structural response of stiffened plates having actual scantlings of offshore structures was performed. The numerically obtained maximum deformations were compared with the results from the improved SDOF method in a parametric study, and the variation of both methods was verified. Finally, simple yet accurate and reliable formulations for prediction of structural response were empirically derived. These formulations are expected to be usefully employed as a first-hand tool for prediction of damage extent of marine structures (including offshore structures) due to explosion loads.  相似文献   

17.
双底双壳油轮中横剖面结构优化设计专家系统   总被引:3,自引:1,他引:2  
本文利用船舶中横剖面设计专家系统外壳[1],结合专家经验、领域第一原理以及基于数据离散的优化方法,在补充了具体专业知识以后获得了双底双壳油轮中横剖面结构设计专家系统。该系统能够模仿专家的设计过程进行设计,这对于保存和利用专家知识、优化设计结果都有直接意义。  相似文献   

18.
In this paper a hybrid process of modeling and optimization,which integrates a support vector machine(SVM) and genetic algorithm(GA),was introduced to reduce the high time cost in structural optimization of ships.SVM,which is rooted in statistical learning theory and an approximate implementation of the method of structural risk minimization,can provide a good generalization performance in metamodeling the input-output relationship of real problems and consequently cuts down on high time cost in the analysis of real problems,such as FEM analysis.The GA,as a powerful optimization technique,possesses remarkable advantages for the problems that can hardly be optimized with common gradient-based optimization methods,which makes it suitable for optimizing models built by SVM.Based on the SVM-GA strategy,optimization of structural scantlings in the midship of a very large crude carrier(VLCC) ship was carried out according to the direct strength assessment method in common structural rules(CSR),which eventually demonstrates the high efficiency of SVM-GA in optimizing the ship structural scantlings under heavy computational complexity.The time cost of this optimization with SVM-GA has been sharply reduced,many more loops have been processed within a small amount of time and the design has been improved remarkably.  相似文献   

19.
This is Part II in a series of papers. Part I [1] investigated the slamming responses of flexible flat stiffened steel and aluminum plates using the nonlinear explicit finite element code LS-Dyna with the Multi-Material Arbitrary Lagrangian-Eulerian (MMALE) solver. Subsequently, a simplified finite element FSI model of water hitting structures that is realistically close to the slamming phenomenon occurring on the bottom part of offshore structures was proposed. The proposed FSI methodology presented in Part I was verified by comparison with the relevant test data. It was evident that the use of the proposed numerical method presented in Part I was very effective for a benchmarking investigation of slamming load considering the hydroelastic effect. However, the method required much effort in terms of computation time and power analysis resources. The present study, Part II, aimed, as an alternative to the FSI analysis approach, to develop empirical formulae for prediction of slamming loads acting on deformable flat stiffened plates used in marine applications. This paper begins by describing the limitations of the existing approaches based on theoretical, experimental and even numerical studies conducted in the past for estimation of slamming loads. Next, it presents, based on the simulation methodology developed in Part I, rigorous parametric studies that had been performed on actual scantlings of marine-seagoing structures. The effects of structural geometry and water impact velocity on slamming pressure are then investigated in detail. Subsequently, the parametric results are analyzed and utilized to derive empirical formulations for the prediction of slamming loads acting on flat stiffened plates of marine structures. The accuracy and reliability of the proposed formulations are established by comparison with the results of the test and other existing formulations. The proposed formulations are expected to be used for the purposes of the design without any time-consuming FSI analysis of advanced and optimal structures that are robust to slamming.  相似文献   

20.
Derek Graham   《Marine Structures》2007,20(4):202-217
This paper describes the application of finite element (FE) analysis to the prediction of the non-linear elasto-plastic collapse of ring-stiffened cylinders under hydrostatic loading. A range of legacy experimental test models have been analysed using FE idealisations generated using measured as-built shape data including out-of-circularity (OOC), frame alignment and tilt and other scantlings. The FE models also explicitly included the residual stresses caused by cold bending. Short and long ring-stiffened cylinders, which were designed to isolate interframe and overall collapse modes, respectively, were considered as were some intermediate length cylinders where the possibility of interactive collapse was also present. In general, the collapse pressures were predicted to within 6%. However, for some of the interframe collapse models, it was necessary to use the minimum measured plate thickness to achieve this. This was largely attributable to the limited measured plate thickness data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号