首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This is Part II in a series of papers. Part I [1] investigated the slamming responses of flexible flat stiffened steel and aluminum plates using the nonlinear explicit finite element code LS-Dyna with the Multi-Material Arbitrary Lagrangian-Eulerian (MMALE) solver. Subsequently, a simplified finite element FSI model of water hitting structures that is realistically close to the slamming phenomenon occurring on the bottom part of offshore structures was proposed. The proposed FSI methodology presented in Part I was verified by comparison with the relevant test data. It was evident that the use of the proposed numerical method presented in Part I was very effective for a benchmarking investigation of slamming load considering the hydroelastic effect. However, the method required much effort in terms of computation time and power analysis resources. The present study, Part II, aimed, as an alternative to the FSI analysis approach, to develop empirical formulae for prediction of slamming loads acting on deformable flat stiffened plates used in marine applications. This paper begins by describing the limitations of the existing approaches based on theoretical, experimental and even numerical studies conducted in the past for estimation of slamming loads. Next, it presents, based on the simulation methodology developed in Part I, rigorous parametric studies that had been performed on actual scantlings of marine-seagoing structures. The effects of structural geometry and water impact velocity on slamming pressure are then investigated in detail. Subsequently, the parametric results are analyzed and utilized to derive empirical formulations for the prediction of slamming loads acting on flat stiffened plates of marine structures. The accuracy and reliability of the proposed formulations are established by comparison with the results of the test and other existing formulations. The proposed formulations are expected to be used for the purposes of the design without any time-consuming FSI analysis of advanced and optimal structures that are robust to slamming.  相似文献   

2.
With the increasing applications in the offshore industry such as oil and gas jackets, submarine pipelines and wind turbine foundations, concrete-filled double skin steel tubular (CFDST) structures are encountering the ever-increasing risk of threats to underwater explosions (UNDEX). This study presents a systematical investigation on the structural behaviors and design recommendations of the CFDST structures subjected to UNDEX loadings through finite element analysis (FEA) approaches. Finite element models have been developed, where the non-linear material properties of the constitutive steel and concrete parts and the composite actions in-between have been considered. The FEA models are verified against the experimentally determined shock wave pressure history, the deformation shapes, and the residual strength. The full-range analyses were firstly carried out on the structural responses of CFDST structures, including the typical damage patterns and residual strength of the specimen after UNDEX. Then, the parametric studies show that the cross-section hollow ratio, charge weight, and explosion distance play great roles in determining the residual strengths. Thereafter, damage indexes considering the parameter of the hollow ratio and the scaled explosion distance has been formulated, and design recommendations have been suggested accordingly.  相似文献   

3.
加筋圆柱壳水下爆炸动响应数值模拟   总被引:7,自引:0,他引:7  
汪俊  刘建湖  李玉节 《船舶力学》2006,10(2):126-137
圆柱壳是潜艇和海洋工程结构物广泛采用的结构单元,研究其水下爆炸动响应有助于深入了解圆柱壳结构的失效规律和机理,对于提高潜艇的生命力和战斗力有着重要的意义.本文首先研究了采用ABAQUS软件的水下爆炸载荷模型和计算参数的选取范围,然后选取加筋圆柱壳舱段为研究对象进行水下爆炸数值模拟,计算得出基座的冲击环境与试验数据吻合良好.本文进一步对圆柱壳在水下爆炸条件下的动响应规律进行了研究,得出了结构不同部位冲击动响应和冲击环境,并对不同部位冲击环境的差异进行了分析,得出了复杂圆柱壳结构在水下爆炸作用下的动响应和冲击环境规律.  相似文献   

4.
[目的]对于受到爆炸脉冲载荷冲击作用的船体结构,基于饱和冲量现象的相关研究表明,仅根据最大载荷幅值和脉冲总冲量来设计船体结构是不合理的,需探究工程应用中的饱和冲量现象。[方法]首先,总结饱和冲量概念的提出及研究发展;然后,以舱室内爆炸为典型算例,分析内爆炸载荷的曲线特性及结构响应特征;最后,基于饱和等效方法将复杂的内爆炸载荷等效为矩形脉冲载荷,采用理论及数值方法对等效载荷进行计算。[结果]结果表明:在舱室内爆炸准静态超压情况下普遍存在饱和冲量现象,实际工程应用中爆炸载荷会对结构造成较大的塑性变形,通常超过10倍板厚;而运用基于饱和冲量的等效方法分析,所得结果与数值仿真结果的误差小于10%。[结论]运用此方法可更准确地得出结构塑性动力响应结果,在结构抗冲击设计优化时,还可减少繁琐的复杂非线性数值计算,使设计更高效。  相似文献   

5.
Gas explosions generally cause catastrophic damage to surrounding structures and humans. The application of blast wall can effectively prevent the damage. The uniform explosion load is widely used in assessing structural response, but it cannot represent the non-uniform characteristic of actual explosion pressures. The main contents of this paper are to study the effect of gas cloud characteristics on explosion pressure distribution, and analyze the effect of non-uniform loads on structural responses. The results reveal that the explosion loads have strongly spatial inhomogeneous when explosion scenarios have large sized cloud or long combustion distance. By establishing the overpressure-probability exceedance curves for uniform loading method and distributed loading method, based on the given accident frequency several design loads are determined. The structural responses of blast wall under design loads are assessed based on explosion evaluation acceptance criteria. It can be seen that the use of uniform loading method underestimates the structural response and misjudges the deformation pattern compared to actual explosion loads. Global and local explosion pressures should be considered simultaneously in the design specification. The overpressure-probability exceedance curves for non-uniform explosion pressures are recommended to establish the design load for blast wall.  相似文献   

6.
Plates form one of the basic elements of structures. Land-based structures may be subjected to air blast loads during combat environment or terrorist attack, while marine structures may be subjected to either air blast by the attack of a missile above the water surface or an underwater explosion by the attack of a torpedo or a mine or a depth charge and an aircraft structure may be subjected to an in-flight attack by on-board explosive devices. Furthermore, gas explosion occurs in offshore installations and industries. This review focuses on the phenomenological evolution of blast damage of plates.  相似文献   

7.
Recently, external terrorist activities have become one of the most influential events on structural safety because of the absence of proper mechanisms to detect these events. In this study, the effects of surface explosions on the dynamic response and blast resistance of a submarine tunnel are investigated by using a coupled Lagrange and Euler (CLE) method. The feasibility and accuracy of the numerical method and material models are verified against the experimental data. After that, the numerical model is utilized to investigate the dynamic behavior and damage evolution of the submarine tunnel subjected to surface explosions. The dynamic behavior of the tunnel under various detonation scenarios in terms of the explosive weight and water depth is explored. Both the localized damage mechanism and the global structural response of the tunnel are examined. Empirical formulas are proposed to predict the failure modes of tunnel. Besides, studies of tunnel protection against potential attacks by using carbon fibre reinforced polymer (CFRP) and ultra-high performance concrete (UHPC) are also discussed. Numerical results in this study provide tunnel owners and engineers with thorough and important information on the structural performance of submarine tunnels subjected to blast loads, helping them in choosing effective protection strategies for potential explosion events.  相似文献   

8.
A risk-based design framework should involve both risk assessment and risk management. This article introduces and describes a number of procedures for the quantitative assessment and management of fire and gas explosion risks in offshore installations. These procedures were developed in a joint industry project on the explosion and fire engineering of floating, production, storage and off-loading units (the EFEF JIP), which was led by the authors. The present article reports partial results, focussing on defining the frequency of fires and explosions in offshore installations. Examples of the aforementioned procedures’ application to a hypothetical floating, production, storage, and off-loading unit (FPSO) are presented. A framework for the quantitative risk assessment of fires and explosions requires the definition of both the frequency and consequences of such events. These procedures can be efficiently applied in offshore development projects, and the application includes the assessment of design explosion and fire loads as well as the quantification of effects of risk control options (RCO) such as platform layout, location and number of gas detectors, isolation of ignition sources etc.  相似文献   

9.
《Marine Structures》2004,17(2):139-160
Profiled blast barriers are an integral part of offshore topsides where they are required to protect personnel and safety critical equipment against the effects of a possible hydrocarbon explosion. Limited studies on their response have been presented, particularly at high overpressures. This paper presents a numerical study using finite element analysis to investigate the response of stainless steel profiled barriers subjected to hydrocarbon explosions. By examining three profiles of varying depth (deep, intermediate and shallow) commonly used in offshore topside structures, the criteria governing their behaviour are highlighted. The static capacity and the dynamic response of the barriers are established up to the maximum capacity level and into the post peak or buckling response regime. The parameters that were found to have profound effects on the analyses include imperfections, boundary conditions and modelling assumptions. Through this study, recommendations and guidelines of using finite element analysis for the design or analysis of such explosion resistant barriers are given.  相似文献   

10.
The development of robust damage detection methods for offshore structures is crucial to prevent catastrophes caused by structural failures. In this research, we developed an Improved Modal Strain Energy(IMSE) method for detecting damage in offshore platform structures based on a traditional modal strain energy method(the Stubbs index method). The most significant difference from the Stubbs index method was the application of modal frequencies. The goal was to improve the robustness of the traditional method. To demonstrate the effectiveness and practicality of the proposed IMSE method, both numerical and experimental studies were conducted for different damage scenarios using a jacket platform structure. The results demonstrated the effectiveness of the IMSE method in damage location when only limited, spatially incomplete, and noise-polluted modal data is available. Comparative studies showed that the IMSE index outperformed the Stubbs index and exhibited stronger robustness, confirming the superiority of the proposed approach.  相似文献   

11.
The development of robust damage detection methods for offshore structures is crucial to prevent catastrophes caused by structural failures. In this research, we developed an Improved Modal Strain Energy (IMSE) method for detecting damage in offshore platform structures based on a traditional modal strain energy method (the Stubbs index method). The most significant difference from the Stubbs index method was the application of modal frequencies. The goal was to improve the robustness of the traditional method. To demonstrate the effectiveness and practicality of the proposed IMSE method, both numerical and experimental studies were conducted for different damage scenarios using a jacket platform structure. The results demonstrated the effectiveness of the IMSE method in damage location when only limited, spatially incomplete, and noise-polluted modal data is available. Comparative studies showed that the IMSE index outperformed the Stubbs index and exhibited stronger robustness, confirming the superiority of the proposed approach.  相似文献   

12.
As well as shock wave and bubble pulse loading, cavitation also has very significant influences on the dynamic response of surface ships and other near-surface marine structures to underwater explosive loadings. In this paper, the acoustic-structure coupling method embedded in ABAQUS is adopted to do numerical analysis of underwater explosion considering cavitation. Both the shape of bulk cavitation region and local cavitation region are obtained, and they are in good agreement with analytical results. The duration of reloading is several times longer than that of a shock wave. In the end, both the single computation and parallel computation of the cavitation effect on the dynamic responses of a full-scale ship are presented, which proved that reloading caused by cavitation is non-ignorable. All these results are helpful in understanding underwater explosion cavitation effects.  相似文献   

13.
This paper presents a benchmark study on the slamming responses of offshore structures’ flat-stiffened plates. The objective was to compare the fluid-structure interaction (FSI) simulation methodologies, modeling techniques, and established researchers' experiences in predicting slamming pressure. Three research groups employing the most common commercial software packages for numerical FSI simulations (i.e. LS-Dyna ALE, LS-Dyna ICFD, ANSYS CFX, and Star-CCM+/ABAQUS) participated in this study. Wet drop test data on flat-stiffened aluminum plates of light-ship-like bottom structures available in the open literature was utilized for validation of the FSI modeling. A summary of the experimental conditions including the geometry model and material properties, was distributed to the participants prior to their simulations. A parametric study on flat-stiffened steel plates having actual scantlings used in marine installations was performed to investigate the effect of impact velocity and plate rigidity on slamming response. The FE simulation results for the total vertical forces acting on the stiffened plates and their structural responses to those forces, as obtained from the participants, were analyzed and compared. The reliable and accurate predictions of slamming loads using the aforementioned commercial FSI software packages were evaluated. Additionally, equivalent static slamming pressures resulting in the same permanent deflections, as observed from the FSI simulations, were reported and compared with analytical models proposed by the Classification Standards DNV and existing experimental data for calculation of the slamming pressure. The study results showed that the equivalent load model depends on the water impact velocity and plate rigidity; that is, the equivalent static pressure coefficient decreases with an increase in impact velocity, and increases when impacting structures become stiffer.  相似文献   

14.
韩超帅  马永亮  曲先强  张猛 《船舶力学》2017,21(12):1527-1539
文章提出一种基于等效疲劳载荷的快速有效的结构优化设计方法,首先通过bladed模拟得到时域下的风载荷,然后通过雨流计数法则和等效损伤理论得到相应的疲劳载荷谱和等效疲劳载荷,接着以导管架式海上风机为例,利用AN-SYS对其进行三维建模,选取三种典型管节点和两种非管节点,基于热点应力法计算了其在三种风疲劳载荷作用下的疲劳损伤,通过比较三种载荷作用下的疲劳损伤结果,验证了等效疲劳载荷的可靠性.接着又计算了各等效疲劳载荷分量单独作用下的海上风机焊接节点的疲劳损伤,得出各疲劳载荷分量对疲劳总损伤的贡献,可以为设计者提供更好的载荷设计依据.相比于传统的时域疲劳分析方法和疲劳载荷谱方法,等效疲劳载荷方法更加方便有效.  相似文献   

15.
The subsea equipment installation is a complex operation that demands a precise and reliable approach to avoid the accidental losses of lives and equipment damage. The multibody installation system is overwhelmed with the dynamic behavior and responses of the system, which signifies the importance of analysis of the Multibody Dynamic System (MBDS). The modeling of MBDS is challenging and complicated due to the interconnectivity and nonlinearity assigned to them. In this paper, the planar dynamics of a floating multibody system are attained by employing two tugboats and a payload with a contextual offshore installation scenario to be applied in a water depth of over 1500 m. The lifting operation is nine degrees of freedom (9-DOF) multibody model done with the help of two strands and three bodies having 3-DOF each. The coupled equations of motion are established by deploying the Velocity Transformation Technique. The hydrodynamic and two-strand forces are simplified as linear, while the hydrostatic and mooring forces are treated as nonlinear external loads. The numerical solution to the equations for the MBDS is obtained from the Runge Kutta Method of Fourth-Order. Furthermore, the Finite Element Modeling approach discusses the installation operation using Y-method. The results of the proposed numerical model are validated by comparing it with the numerical simulation from OrcaFlex, and the results from both models are found to be in good agreement. The findings of this study will help improve the safe and stable installation of deep-water multibody structures.  相似文献   

16.
李晔 《船舶工程》2016,38(S1):160-163
由于海洋平台结构长期处于恶劣的海洋环境中,并受到各种载荷的交互作用,结构容易产生各种形式的损伤。因此,对海洋平台进行实时监测有着十分重要的现实意义。本文以单筒简易导管架平台为例,主要在结构损伤的判定和定位两方面对海洋平台的实时结构健康监测进行研究,结果表明通过对结构响应信号进行小波分析,小波变换系数和小波包能量分布可以很好地定义损伤识别指标。  相似文献   

17.
The near-field underwater explosion poses a great threaten to marine ships by introducing both local and overall damage on their hull structures. In this paper, a series of near-field underwater explosion experiments were carried out on the mimic steel hull structures to investigate the effects of the standoff distance on their dynamic behavior. Special attention was paid on their deformation process and failure modes. After that, a fluid-solid coupling algorithm was implemented in establishing a finite element (FE) model to simulate dynamic response of the hull structures under a near-field underwater explosion. The numerical results showed a good agreement with the experimental data. A standoff distance threshold was found to result in the maximum structural deformation. The deformation magnitude was monotonically decreased by either increasing or decreasing the standoff distance from the threshold value.  相似文献   

18.
The development of robust design tools for offshore wind turbines requires knowledge of both wave and wind load models and response analysis. Verification of the numerical codes is required by the use of experiments and code-to-code comparisons. This paper presents a hydroelastic code-to-code comparison between the HAWC2 and USFOS/vpOne codes for a tension leg spar (TLS) wind turbine with a single tether. This concept is hence based on the TLP and Spar concepts. The comparison is performed using coupled hydroelastic time domain simulations. Several aspects of modelling, such as wave simulation, hydrodynamic and structural modelling, are addressed for the TLS. Wave-induced motions of the support structure affect the power performance of a wind turbine. Furthermore, overload of the tension leg should be avoided. In this paper, the motion and tension responses are compared. The tension leg introduces nonlinear effects on the spar motion. These nonlinear effects include combined-frequency effect such as double, difference and sum of wave, as well as natural pitch and surge frequencies. Hydrodynamic loads are based on a combination of the Morison formula and the pressure integration method. A comparison indicates that the motion and tension responses obtained in the two codes are in good agreement.  相似文献   

19.
Marine structures such as ships and offshore platforms are mostly designed with damage tolerance and this design philosophy requires accurate prediction of fatigue crack propagation process. Now more and more people have realized that only a fatigue life prediction method based on fatigue crack propagation (FCP) theory has the potential to satisfy the accuracy requirement and to explain various fatigue phenomena observed. In the past several years, the authors’ group has made some efforts in developing a unified fatigue life prediction (UFLP) method for marine structures. The key issue for this development is to establish a “correct” crack growth rate relation. In this paper the improvement of the crack growth rate model is dealt with first. A new crack growth rate model based on the concept of partial crack closure is presented. The capability of the model is demonstrated. Secondly, studies on the engineering approaches to determine the parameters in the new crack growth rate model are carried out and validated by comparing with the experimental results on a wide range of alloys. Thirdly, the preliminary studies on some significant problems such as load sequence effect are presented. Finally, further studies for the application of the UFLP method to the fatigue strength assessment of marine structures are pointed out.  相似文献   

20.
The Powell's method was developed to determine the optimal stiffness and damping of multi-tuned mass dampers (MTMD) in offshore wind turbine (OWT) support structures under fatigue loads. Numerical examples indicated that the Powell's method results are always better than those using MTMD formulations. With the exception of the blade passing (3P) frequency, it was found in this work that a positive integer (n) multiple of the 3P frequency will also result in a large wind-induced vibration, which can be excited by the frequency of the first structural vertical rotation mode and will cause significant fatigue damage. The first translation mode TMD installed at the tower top is efficient to increase fatigue life at the tower and brace connections, but it cannot reduce fatigue damage at the column and brace connections below the platform. The second translation mode TMD can reduce fatigue damage resulting from large wave loads and thus increase the fatigue life of the braces and columns. The mode-3 TMD with a reduction in the 3(3P) vertical rotation can effectively increase the fatigue life of the braces and columns. Thus, the appropriate use of these TMDs can be effective for the fatigue problem of OWT support structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号