首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
考虑轮轨蠕滑接触关系,以及普通货车两轴转向架的导向轮对和非导向轮对分别作用在曲线两股钢轨轨头上的应力、应变,建立基于临界平面法的钢轨疲劳裂纹萌生寿命预测模型,研究不同轨底坡对曲线线路钢轨疲劳裂纹萌生寿命的影响。结果表明:在各种轨底坡下外轨疲劳裂纹均主要由导向轮引起,而内轨疲劳裂纹在轨底坡为1∶40~1∶25时主要由导向轮引起,在轨底坡为1∶20~1∶10时主要由非导向轮引起;线路曲线半径越小,导向轮作用下的内外轨疲劳裂纹萌生越早,反之则非导向轮作用下的内轨疲劳裂纹萌生越早;磨耗型新轮与75kg·m-1新轨接触时,在曲线半径≤1 000m条件下采用1∶20的轨底坡,在曲线半径1 000m条件下采用1∶40的轨底坡,可以延长钢轨疲劳裂纹萌生寿命;选取不同的轨底坡,可以改变轮轨接触斑的位置、面积和黏着—滑动区的分布及蠕滑力,进而影响到钢轨疲劳裂纹萌生寿命,但改变轮轨接触斑位置的范围有限,不同轨底坡时接触斑移动距离在外轨上小于10.2mm,在内轨上小于3.0mm。  相似文献   

2.
对实际伤损钢轨的宏微观形貌、金相、硬度以及探伤等检验分析,确定轨头踏面下4mm~6mm区域存在纵向水平疲劳裂纹是产生全长淬火钢轨伤损的原因。检验分析表明,在轮轨接触剪应力作用下,由于淬硬层区域存在金相组织、硬度过渡不均匀等淬火缺陷,导致轨头内部纵向水平疲劳裂纹萌生和扩展,引起钢轨伤损;在分析基础上,提出预防和改进措施。  相似文献   

3.
基于临界平面理论的钢轨疲劳裂纹萌生预测模型,建立轮轨三维瞬态滚动接触有限元模型;模拟重载铁路的轮轨接触状态;分析不同轨底坡(分别为1∶40,1∶30,1∶20,1∶10)和不同摩擦系数(分别为0.25,0.30,0.35,0.40,0.50)对轮轨接触状态和钢轨疲劳裂纹萌生的影响。结果表明:轨底坡为1∶40时,采用以上钢轨预测模型得到的钢轨疲劳裂纹萌生位置与现场观测结果基本吻合;轨底坡对轮轨接触斑的位置及应力状态影响较大,LM型踏面车轮与75 kg·m-1钢轨在轨底坡为1∶20时更为匹配;随着轨底坡增大,钢轨疲劳裂纹萌生时的通过总重先增大后减小,轨底坡为1∶20时达到最大;随着摩擦系数增大,钢轨疲劳裂纹越容易萌生。  相似文献   

4.
钢轨润滑以及轨顶摩擦控制是重载铁路减轻钢轨侧磨以及伤损的有效措施之一。本文对比分析不同摩擦系数条件下,机车的曲线通过性能。分析结果表明,曲线外股钢轨轨距角处的润滑,有利于减小轮轨磨耗,与此同时,减小了机车的蠕滑导向力矩,从而增大了导向轮轮对冲角,轮轨横向力亦呈现增大趋势;曲线内轨轨顶摩擦系数适当减小对减小轮轨横向力起到积极作用。轮轨纵向蠕滑系数的增大,可明显提高轮对导向力矩,有利于轮对趋于径向位置,并减小横向力和轮对冲角,使得机车的曲线通过性能得到显著改善。  相似文献   

5.
1核伤与斜裂纹的特点钢轨轨头横向疲劳裂纹俗称轨头核伤(简称核伤),呈椭圆形,长、短轴之比约3:2。核伤疲劳源一般位于距踏面8~12mm、距内侧5~10mm处。核伤方向与轨头侧面近乎垂直,与踏面多呈10°~25°夹角(单行线上)或近乎垂直(复行线上)。核伤在未发展到外表面时肉眼不可见,称"白核";已扩展到外表面时,因氧化变为黑色,称"黑核"。核伤可导致钢轨横向折断,严重影响铁  相似文献   

6.
为分析机车牵引力对轮轨关系的影响,在SIMPACK多体动力学软件中分别建立了基于60钢轨和60N钢轨的"机车-轨道"耦合动力学模型,设定了水平轨道和坡道通过曲线的2种工况,分析机车牵引力与轮轨蠕滑关系、最大法向接触应力和RCF损伤系数的关联度。计算结果表明:增加牵引力使轮轨纵向蠕滑率和纵向蠕滑力迅速增加,横向蠕滑力降低,机车在60N钢轨上运行时变化尤为明显;钢轨内侧纵向蠕滑力受牵引力作用方向改变,引起钢轨内侧裂纹方向改变;相比60钢轨,60N钢轨抵抗磨耗的能力较强,但容易产生滚动接触疲劳。  相似文献   

7.
以现场实测轮轨力为样本,利用参数假设检验方法,确定轮轨力幅值和频率特征,进而根据轮轨力分布特征编制荷载谱。建立轨道结构的多跨连续梁模型,分析群载作用下钢轨受力情况,确定最大弯曲应力所在位置;利用子模型技术,取最大弯曲应力所处的一跨钢轨为研究对象,建立子模型,分析不同幅值下轮轨接触斑内局部应力情况。根据临界平面法思想,建立随机轮轨力作用下钢轨滚动接触疲劳裂纹萌生寿命预测模型。结合具体实例分析表明:在一定速度范围内,轮轨力符合正态分布;根据随机轮轨力作用下钢轨滚动接触疲劳裂纹萌生寿命预测模型,预测U75V钢轨通过约560万吨总重时轨面萌生裂纹,与现场观察结果吻合。  相似文献   

8.
钢轨打磨对轮轨滚动接触斑行为影响研究   总被引:4,自引:3,他引:1  
高速铁路钢轨轨头非对称打磨有效地减缓了钢轨疲劳斜裂纹的形成与发展.利用三维弹性体非Hertz滚动接触理论及数值程序CONTACT分析了钢轨轨头非对称打磨对轮轨接触斑行为的影响.结果表明,打磨后轮轨磨耗数有所增加,有利于预防钢轨疲劳裂纹的形成.  相似文献   

9.
基于Abaqus软件,建立闸瓦-车轮-轨道三维有限元模型,设置车轮钢材料的接触属性和材料属性,对重载列车紧急制动过程进行热力耦合仿真;基于损伤参量的疲劳裂纹萌生寿命预测模型,分析重载列车整个紧急制动过程中车轮踏面瞬态温度分布、径向和切向应力分布以及弹性和塑性应变分布,并通过计算车轮踏面损伤参量判断疲劳裂纹萌生位置,预测不同轴重和不同闸瓦压力对车轮踏面疲劳裂纹萌生寿命的影响。结果表明:重载列车紧急制动时,车轮踏面上制动温度越高则相应热应力、热应变也越大,尤其当踏面最高温度超过100℃时,热负荷对裂纹萌生的影响更加显著;车轮踏面上裂纹萌生更多的是由剪应力和剪应变引起,轮轨接触斑内是最先萌生裂纹的区域;轴重为30 t、闸瓦压力为21 kN、初速度为100 km·h~(-1)时损伤参量最大为3.801 1,最大循环制动次数仅有236次。  相似文献   

10.
固定辙叉有害空间造成的轨线不连续及结构不平顺大幅加剧车辆与辙叉间的动态相互作用,进而引起道岔伤损劣化加剧及服役寿命缩短。以重载铁路12号固定辙叉为研究对象,基于显式积分算法,建立考虑材料弹塑性及轮轨真实几何廓形的车轮-辙叉三维轮轨瞬态滚动接触有限元模型,研究不同运营速度下车轮不同方向通过时车轮与固定辙叉动态相互作用及轮轨接触行为,详细分析轮载过渡区内辙叉钢轨应力、应变大小及分布规律,结合材料安定图及疲劳指数对轮轨接触疲劳伤损特性进行分析,得到了钢轨滚动接触疲劳伤损易发区域为心轨断面顶宽20~30 mm,与现场固定辙叉疲劳裂纹发生位置基本一致。所建立的模型及研究结论能够为固定辙叉结构优化及疲劳寿命预测提供理论支撑。  相似文献   

11.
为了解机车在牵引工况下轮轨的蠕滑特征,本文采用线性蠕滑理论和非线性修正方法,推导出轮轨接触的蠕滑力公式,结合磨耗型踏面的轮轨接触几何特征,采用Simpack多体动力学软件建立DF8B型三轴转向架机车动力学模型,进行动力学仿真验证。研究发现:传统转向架机车在牵引工况通过曲线时,导向轮对外侧车轮轮缘根部接触钢轨,总的蠕滑力处于饱和状态;当轮轨接触总的蠕滑力饱和时,牵引力会引起轮轨接触界面的纵向和横向蠕滑力重新分配,牵引力越大,纵向蠕滑力越大,横向蠕滑力越小。惰行工况下导向力矩最大,随着牵引力的增加,导向轮对的导向力矩逐渐减小。  相似文献   

12.
以普速铁路京九线不同曲线半径为研究对象,建立车辆-轨道动力学模型、磨耗和裂纹萌生预测模型;计算60N廓形在不同曲线半径条件下的轮轨接触状态,预测了不同曲线条件下磨耗发展率、裂纹萌生位置与寿命,并与京九线现场观测结果进行对比验证.研究结果表明:随着疲劳损伤的累积,不同曲线半径下钢轨的阶段磨耗发展率呈下降的趋势,其中曲线半径小(600 m)的磨耗发展率降低最快,随着曲线半径的增大,平均磨耗发展率降低趋势减缓;不同曲线半径下钢轨裂纹萌生位置均在钢轨表面以下1~3 mm处,横向位置在距离轨顶中心15~20 mm范围内,曲线半径600 m外轨裂纹萌生寿命大约为2.64×10^5次,内轨裂纹萌生寿命约为4.86×10^5次,与现场观测较为符合.  相似文献   

13.
建立了基于钢轨螺栓孔残余应力分布规律的局部应变,并考虑残余应力衰减的疲劳裂纹萌生寿命预测模型。分析了冷扩张对疲劳裂纹尖端应力强度因子分布的影响。结果实验探讨了冷扩张过程对钢轨螺栓孔疲劳寿命的影响方式和效果。结果表明,冷扩张过程所引入的切向残余压应力能保持足够的强度,以对钢轨螺栓孔到显著的防裂和止裂作用。  相似文献   

14.
针对钢轨斜裂纹特点提出钢轨非对称打磨技术以减轻和控制斜裂纹的形成与发展速率。利用SIMPACK动力学软件建立"蓝箭"号动车动力学分析模型,研究钢轨非对称打磨对列车运行性能的影响。研究结果表明:钢轨非对称打磨基本不影响车辆动力学性能和蠕滑行为;钢轨非对称打磨改变了轮轨接触几何参数,使轮轨接触点远离原内侧轨肩位置;钢轨非对称打磨通过改变钢轨廓形导致接触斑面积增大,明显降低轮轨最大接触应力;钢轨非对称打磨通过改变轮轨接触点分布和降低接触应力可减缓钢轨斜裂纹的萌生与扩展。  相似文献   

15.
机车牵引状态下曲线通过导向特性研究   总被引:1,自引:0,他引:1  
考虑车轮与钢轨的运动特性及轮周牵引力,推导出机车在牵引状态下通过曲线时的轮轨蠕滑率计算公式,并对曲线通过时的轮轨横向动态相互作用特性进行仿真计算与分析;同时研究牵引力大小对转向架导向性能的影响,对比分析了机车牵引与惰行状态下的导向性能。理论仿真分析结果表明:牵引力可以改变轮轨纵向蠕滑力的大小和方向,与惰行工况相比,牵引状态下的轮对导向力矩有所减小,轮对的自导向能力减弱,不利于曲线通过;提高牵引力,总轮轨蠕滑率将很快达到饱和状态,牵引力越大,轮轨纵向蠕滑力越大,两侧纵向蠕滑力差值越小,机车轮对自导向能力越差,轮对冲角增大,而轮轨横向蠕滑力越小;当牵引力增加到一定程度时,总轮轨蠕滑率超过极限状态,曲线通过时两侧轮径差太小而出现打滑和空转的现象。  相似文献   

16.
基于单轮对荷载作用下钢轨滚动接触疲劳裂纹萌生寿命的预测方法,结合疲劳损伤累积理论,提出基于疲劳损伤累积的钢轨裂纹萌生寿命预测方法,确定转向架前、后轮对累积荷载作用下重载铁路曲线内轨裂纹的萌生寿命及其特征;构造权重参数,用以表征前、后轮对在内轨裂纹萌生过程中各自的作用权重。采用SIMPACK仿真软件建立C70型货车、LM型车轮踏面、U75V钢轨构成的车辆—轨道模型,预测不同曲线半径、超高、轨底坡和摩擦系数工况下内轨裂纹的萌生寿命、萌生位置和开裂方向、权重参数,并与现场试验进行对比。结果表明:内轨裂纹的萌生要早于外轨,并发生在距离轨顶约2~3mm的轨头次表面,车轮对内轨的磨耗作用不大;在内轨裂纹的萌生过程中,随着轨道条件的变化,轮对的权重取值范围可以划分为3个区域,分别对应前轮对作用权重绝对大和相对大以及后轮对作用权重相对大3类情况;大多数内轨裂纹的开裂方向分布在一定的范围之内,但有少部分裂纹的开裂方向异常且在扩展过程中容易产生剥离掉块。  相似文献   

17.
针对地铁曲线段钢轨波磨与滚动接触疲劳损伤共存现象,在ANSYS/LS-DYNA软件中建立了采用显式时间积分的瞬态有限元模型,分析钢轨短波波磨对其上滚动接触疲劳裂纹瞬态扩展行为的影响。以我国某地铁R450 m圆曲线段低轨损伤为例,考虑21条长度15 mm、深度3 mm、倾角30°且等间距分布的半椭圆形裂纹,波长30 mm、波深范围为0.03~0.09 mm的典型短波波磨,分析在速度67.6 km/h、摩擦因数0.5和牵引系数0.1等条件下,导向轮对通过时低轨侧瞬态滚动接触行为和裂纹群瞬态扩展行为。结果表明:裂纹群对轮轨接触产生持续周期性激励,且造成法、切向动态轮轨力波动幅值远低于典型短波波磨;处于波磨激励下动态加载时段内的裂纹,其最大裂尖动态应力强度因子较无波磨工况更大,而在减载时段内则相对更小,整个裂纹群的动态应力强度因子结果呈现出与波磨几何相对应的周期性波动;当波深增加时,最大裂尖动态应力强度因子也相应增大。在波长30 mm、波深0.09 mm的波磨激励下,裂纹群内的等效动态应力强度因子最大值较无波磨工况增加了34.4%,采用文献中报道的裂纹稳态扩展速率Paris公式发现,对应裂纹扩...  相似文献   

18.
作为探讨轮轨相互作用系列文章中的第四篇,介绍轮轨界面材料滚动接触疲劳(RCF)萌生与扩展的基本机理及接触应力、蠕滑率和摩擦系数等因素对其的影响,着重分析采用摩擦管理技术控制轮轨滚动接触疲劳破坏的基本原理,并结合国内外铁路实际应用案例介绍摩擦管理降低轮轨滚动接触疲劳萌生与扩展的具体效果。  相似文献   

19.
钢轨接触疲劳裂纹的产生与防治   总被引:4,自引:0,他引:4  
钢轨轨顶内侧轨距角处由于重复的轮轨荷载作用,会产生接触疲劳裂纹,并逐渐发展,成为钢轨折断的主要原因之一.  相似文献   

20.
上海地铁1号线动车在使用几年后其转向架构架齿轮箱吊座就开始产生裂纹。根据裂纹萌生部位的线路实测应力,采用应变疲劳寿命分析方法对构架齿轮箱中吊座进行了疲劳寿命计算,缺口疲劳系数是影响疲劳寿命的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号