首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.
Fatigue assessment is a critical design aspect for many offshore structures. Soil-foundation interaction has a direct impact on the system dynamic response of these structures. While the stiffness of the soil-foundation interaction influences the system's natural frequency, the damping influences the amplification of the structural response to environmental excitations. This paper presents a simplified model for estimating the soil damping due to nonlinear soil response for pile foundations, which have wide applications in the offshore industry, such as for supporting jacket platforms, wind turbines and wellhead facilities. The proposed model is fundamentally linked to the damping response of the soil measured at element level therefore it offers design engineers an efficient and accurate way to estimate soil-pile interaction damping based on site-specific soil data. Approaches to include the suggested model for structural analysis are also proposed.  相似文献   

2.
To optimize offshore wind turbine (OWT) design, an engineering tool has been developed allowing for a detailed investigation of the effects of nonlinear soil stiffness and damping on foundation dynamics. We have studied the response of a vertically oscillating offshore wind monopile foundation in a realistic soil profile subjected to loads between 1 and 200 MN in the frequency range 0–10 Hz with pseudo-static and equivalent linear dynamic model. The non-linear soil behaviour is modelled with an equivalent linear method with shear modulus reduction and damping curves as input. The tool is verified and validated by comparison with elasto-dynamic model and experiments. With increasing load amplitudes foundation stiffness increases and damping decreases. For large load amplitudes the lower part of the pile foundation contributes more to foundation damping. The results indicate the nonlinear foundation stiffness and damping can be modelled rationally by combining stiffness and hysteretic damping from nonlinear static tools with apparent mass and radiation damping from elasto-dynamic analysis. The tool can be used to compute soil springs and dampers based on laboratory-based soil stiffness and damping.  相似文献   

3.
海上风电基础属于典型的柔性结构。由于冰与柔性抗冰结构相互作用的复杂性,长期以来尚未形成基于动冰力响应分析的结构设计。结构抗冰设计中大都是从极端荷载出发,只考虑最大静冰力或最大倾覆力矩。基于对渤海辽东湾柔性抗冰结构的多年监测,发现强烈的冰激振动引起柔性结构的风险性要远大于极端静冰荷载下结构的整体安全问题。为了明确冰区风电基础结构的抗冰性能及抗冰设计的合理性,文章结合基于多年现场冰与结构作用观测及冰荷载的研究成果,明确该类柔性结构与海冰作用形式及其动力特性;提出了柔性抗冰结构设计中应考虑的主要失效模式及评价方法。最后,以渤海某典型风电基础为例,对其抗冰性能进行评价。该文的研究可为寒区风电基础的抗冰设计及安全保障提供合理依据。  相似文献   

4.
The dynamic characteristics of offshore wind turbines are heavily affected by environmental loads from wave and wind action and nonlinear soil behaviour. In the design of the monopile structures, the fatigue load due to wind and wave loading is one of the most important problems to consider. Since the fatigue damage is sensitive to the foundation stiffness and damping, increasing the accuracy of analysis tools used in the design and optimization process can improve the reliability of the structure and reduce conservatism, thereby leading to a more cost-efficient design. In this context, analysis of field data is important for calibrating and verifying purposes. This paper presents analysis of measured accelerations and strains from a wind farm in the North Sea with monopile foundations. Field data during idling conditions, collected over long periods of operation, are analysed and the natural frequencies are determined, and damping is estimated. The measured natural frequencies are compared to calculated values using an aero-servo-hydro-elastic code, showing a good agreement in the frequency range below 2 Hz. Variation of the natural frequencies with intensity of loading may indicate effect of soil nonlinearity on the overall OWT response. Since the first natural bending modes have the largest potential to mobilize soil reactions, they are of primary interest in this context. The effect of load (wave, wind and dynamic bending moment) on the first natural frequency is investigated using different analysis techniques in the frequency domain and time domain. A clear correlation between load level and first natural frequency is demonstrated. A simple nonlinear SSI model of the tower/soil system is employed to numerically investigate the observed changes in the measured first natural frequency with the level of loading and increased overall damping. The simulated results reproduce the general trends in the observed reduction in the first natural frequency and increased damping ratio with the load level. However, the effect of the load level is less than that observed in the measurements, indicating contribution also from other factors than soil nonlinearity.  相似文献   

5.
Dynamic impedances of foundations include dynamic stiffness and damping which have important effect on the internal forces in the structure. In some cases, such as offshore wind turbines, the influence of the foundation impedances on the system's natural frequency and overall damping could potentially have a significant effect on the fatigue life of the structure. The vertical, horizontal and rocking impedances of a skirted foundation (also termed bucket foundation in offshore wind industry) embedded in a fully saturated poroelastic seabed are addressed in this paper. The vertical impedance is most relevant for jacket foundations supported on three or four bucket foundations, while horizontal and rocking impedances are applicable for mono-bucket foundations. The dynamic vibration problems are solved semi-analytically with the help of dual integral equations and Green's functions. Numerical results for dynamic impedances are obtained; damping ratio are also obtained to show the importance of radiation damping for bucket foundations, even at very small excitation frequencies. The influence of length-to-radius ratio, Poisson's ratio, permeability of soil, excitation frequency and thickness-to-radius ratio on the impedances are also studied. Besides, the dynamic load sharing among the top plate, bucket shaft and bucket tip is obtained for vertical load, horizontal load and moment to shed light on the carrying mechanism of bucket foundation at dynamic working loads. It is found that for a rigid bucket foundation, even when the length-to-radius ratio is small (e.g. l/a = 1.0), most of the loads are carried by the shaft, while the top plate and tip of the bucket take only a small portion of the loads. The results of this study will be helpful for understanding the load-carrying mechanism of offshore bucket foundations for normal operation conditions.  相似文献   

6.
Monopile-supported offshore wind turbines (OWTs) are dynamically sensitive structures whose fundamental frequencies may be close to those of environmental and turbine-related excitations. The changes in fundamental frequencies caused by pile-soil interaction (PSI) may result in unwanted resonance and serious O&M (Operation and Maintenance) issues, which have been identified as major challenges in the research field. Therefore, a novel model updating framework with an implicit objective function is proposed to monitor both the stiffness and damping variation of the OWT system based on the measured vibration characteristics, which is further verified by laboratory tests. In particular, layered soil was considered in the tests to simulate the practical soil conditions of Chinese seas. Different pile lengths were introduced to consider the long-term PSI effects for rigid piles and slender piles. The results showed that the variation in the fundamental frequency is significantly reduced in layered soil compared with the pure sand scenario. For the OWT systems in layered soil, the variation in foundation stiffness is negatively related to the burial depth under cyclic loading. The proposed model updating framework is proven reliable for support condition monitoring of OWT systems in complicated soil conditions.  相似文献   

7.
陈前  付世晓  邹早建 《船舶力学》2012,16(4):408-415
支撑结构设计是大型海上风电机组设计的重要部分。文章分析了海上风电机组的各种环境载荷,并以3MW风力机组为例计算其所受环境载荷,包括作用在支撑结构顶端的由风机叶轮转动引起的水平轴向力、作用在塔筒上的风载荷以及作用在基础上的海流、海浪载荷,并采用非线性弹簧来模拟基础与海底土层之间的相互作用。在考虑风轮影响情况下,利用有限元法对支撑结构进行了模态分析。最后,分析了环境载荷作用下支撑结构的动态响应。计算结果表明,在对海上风力发电机组进行动态响应计算时,环境载荷之间的相互耦合作用不能忽略。  相似文献   

8.
Current installation costs of offshore wind turbines(OWTs) are high and profit margins in the offshore wind energy sector are low, it is thus necessary to develop installation methods that are more efficient and practical. This paper presents a numerical study(based on a global response analysis of marine operations) of a novel procedure for installing the tower and Rotor Nacelle Assemblies(RNAs) on bottom-fixed foundations of OWTs. The installation procedure is based on the inverted pendulum principle. A cargo barge is used to transport the OWT assembly in a horizontal position to the site, and a medium-size Heavy Lift Vessel(HLV) is then employed to lift and up-end the OWT assembly using a special upending frame. The main advantage of this novel procedure is that the need for a huge HLV(in terms of lifting height and capacity) is eliminated. This novel method requires that the cargo barge is in the leeward side of the HLV(which can be positioned with the best heading) during the entire installation. This is to benefit from shielding effects of the HLV on the motions of the cargo barge, so the foundations need to be installed with a specific heading based on wave direction statistics of the site and a typical installation season. Following a systematic approach based on numerical simulations of actual operations, potential critical installation activities, corresponding critical events, and limiting(response) parameters are identified. In addition, operational limits for some of the limiting parameters are established in terms of allowable limits of sea states. Following a preliminary assessment of these operational limits, the duration of the entire operation, the equipment used, and weather-and water depth-sensitivity, this novel procedure is demonstrated to be viable.  相似文献   

9.
Predicting extreme responses is very important in designing a bottom-fixed offshore wind turbines. The commonly used method that account for the variability of the response and the environmental conditions is the full long-term analysis (FLTA), which is accurate but time consuming. It is a direct integration of all the probability distribution of short-term extremes and the environmental conditions. Since the long-term extreme responses are usually governed by very few important environmental conditions, the long-term analysis can be greatly simplified if such conditions are identified. For offshore structures, one simplified method is the environmental contour method (ECM), which uses the short-term extreme probability distribution of important environmental conditions selected on the contour surface with the relevant return periods. However, because of the inherent difference of offshore wind turbines and ordinary offshore structures, especially their non-monotonic behavior of the responses under wind loads, ECM cannot be directly applied because the environmental condition it selects is not close to the actual most important one.The paper presents a modified environmental contour method (MECM) for bottom-fixed offshore wind turbine applications. It can identify the most important environmental condition that governs the long-term extreme. The method is tested on the NREL 5 MW wind turbine supported by a simplified jacket-type support structure. Compared to the results of FLTA, MECM yields accurate results and is shown to be an efficient and reliable method for the prediction of the extreme responses of bottom-fixed offshore wind turbines.  相似文献   

10.
根据海上风机基础的打桩作业要求,设计一种单桩稳桩平台,并利用ANSYS APDL软件对单桩稳桩平台在打桩作业工况、遭遇台风工况等极端典型工况的结构强度、整体稳定性和单桩稳定性进行校核。结果表明,设计的稳桩平台可满足海上复杂环境下单桩基础的定位、导向和沉桩等技术要求,为海上风电单桩稳桩平台的结构设计和安全性评估提供参考。  相似文献   

11.
Foundations for Offshore Wind Turbines (OWTs) are designed following the limit state philosophy. One of the considered states is the Serviceability Limit State (SLS), which verifies that the permanent rotation of the foundation generated from accumulated strains in the soil is below a project specific criterion. Despite design codes requiring an estimation of the permanent rotation, there is not clear guidance on how to implement this. This paper describes a methodology to estimate the monopile permanent rotation for SLS and discusses its advantages and limitations. The methodology combines an accumulation method with results from 3D Finite Element Analyses (FEA) and a soil model that accounts for strain accumulation as a function of the number of cycles, relative density and load characteristics. The performance of the proposed methodology is compared against experimental centrifuge tests and results from advanced 3D FEA, indicating that it can predict the permanent rotation with satisfactory accuracy, and with a considerable reduction in computational effort. This is important for the design of OWTs, where different load histories might be required to be checked – often under tight time constraints – to find which load history leads to the largest permanent rotation, and therefore is more critical to SLS design.  相似文献   

12.
The offshore wind industry experienced a boost during the last decade in terms of size of wind farms and rated capacity of the wind turbines: towers are getting taller and blades are getting longer, constantly facing new and complex challenges. Because of the relative immaturity of the wind industry, and the fact that the offshore design standards stemmed from the oil and gas industry, it is generally acknowledged that the reliability levels achieved, although not very well understood, might result in partial safety factors not optimal for OWT. This paper addresses this situation by studying the reliability levels delivered by the current standards and assessing the validity of the safety factors through a reliability-based code calibration. The combination of the low probability of failure imposed on the design of OWTs and the computational cost of the aero-elastic time-domain simulations brings out the need to develop new approaches for reliability analyses. In this paper, the reliability analysis is performed using a Kriging surrogate model to approximate the load-effect from the aero-elastic simulations converting expensive-to-evaluate limit state functions to explicit functions. Subsequently, a calibration of the safety factors is carried out using the probabilistic models from literature. The approach is applied to an industry-reference turbine and support structure. The results showed very low probabilities of failure for the most severe design cases and confirm that the safety factors from the IEC are mostly adequate.  相似文献   

13.
Considering the deficiencies of the traditional monopile foundation for offshore wind turbines (OWTs) in severe marine environments, an innovative hybrid foundation is developed in the present study. The hybrid foundation consists of a traditional monopile and a wide–shallow bucket. A series of numerical analyses are conducted to investigate its behavior under the static and dynamic loading, considering various loading eccentricities. A traditional monopile with the same steel volume is used as a benchmark. Although the monopile outperforms the hybrid foundation in terms of the ultimate moment capacity under each loading eccentricity, the latter can achieve superior or the same performance with nearly half of the pile length in the design loading range. Moreover, the horizontal load and moment are mainly resisted by the bucket and the single pile in the hybrid foundation respectively. The failure mechanism of both the hybrid foundation and the monopile is excessive rotation. In the rotation angle of 0.05 rad, the rotation center is located at the depth of approximately 0.6–0.75 times and 0.65–0.75 times the pile length for the hybrid foundation and the monopile respectively. The increasing loading eccentricities can lead to increasing moment bearing capacity, increasing initial stiffness and upward movement of the rotation center of the two foundations, while decreasing load sharing ratio of the single pile in the hybrid foundation. Three scenarios are considered in investigating the dynamic loading behavior of the hybrid foundation. Dynamic response results reveal that addition of the bucket to the foundation can restrain the rotation and lateral displacement effectively. The superiority of the hybrid foundation is more obvious under the combined wave and current loading.  相似文献   

14.
海上风机导管架基础钢管桩沉桩施工通常需要专门的稳桩平台辅助进行。结合作业工艺要求、海洋环境条件和相关规范,对钢管桩稳桩平台进行结构设计。采用SESAM软件和ANSYS Workbench软件分别对稳桩平台整体结构强度和吊耳局部结构强度进行计算分析,并根据规范对计算结果进行评估。结果表明,稳桩平台整体结构强度和吊耳局部结构强度均满足规范要求。该计算分析方法同样适用于海上升压站导管架基础、海上单桩基础稳桩平台或其他类似导管架结构的强度评估。  相似文献   

15.
为保证船舶的安全进港航行,岛式防波堤堤头一般需设置导航灯,而作为导航灯桩的基础结构及其检修所需的通道设计暂无相关规范可以参考。结合实际工程项目,在岛式防波堤导航灯桩基础及检修通道设计过程中逐步调整和优化,提出了一种合理可行的岛式防波堤导航灯桩基础及检修通道组合结构。该组合结构综合考虑了导航灯桩基础在波浪作用下结构的整体稳定、导航灯桩基础对人工护面块体安装的影响、检修通道使用的便利性以及现场施工的可行性等众多因素。该岛式防波堤导航灯桩基础及检修通道的组合结构可为类似港口工程项目的设计提供一定的参考。  相似文献   

16.
The three-planar tubular Y-joint (3Y-joint) is the main part of the fatigue assessment of tripod substructures of offshore wind turbines (OWTs). As typical multiplanar tubular joints, 3Y-joints are affected a lot by multiplanar interaction between braces. Moreover, the locations of hot spot stress (HSS) can vary considerably under different load types. Thus, the distributions of stress concentration factor (SCF) and multiplanar interaction factor (MIF) along weld toe curves are necessary to calculate HSS. Considering these requirements, this study focuses on the 3Y-joint considering the wide application of the tripod substructure of OWT. A finite element (FE) analysis method is introduced and validated. Then, a numerical database is established covering common ranges of parameters used in practice. The SCF and MIF of 3Y-joint under in-plane bending moment are analyzed. Distribution formulas are proposed and proved suitable for calculating HSS in engineering design.  相似文献   

17.
李泽  王徽华 《船舶工程》2019,41(4):140-144
中国海上风电是绿色能源的重要一支,现已进入大规模发展阶段,其中大直径无过渡段单桩是国内海上风电场主流基础形式。为高效、安全的进行大直径单桩施工,本文通过研究一种单台起重机双钩空中翻身的技术,采用左右大张角双钩起重机、大吨位吊梁、翻桩夹具等手段,在仅需一台大型起重设备的情况,完成了大直径单桩的翻身起重作业,提高了施工效率,降低海上风电场建造成本和安全风险。  相似文献   

18.
以1 000 t海上风电安装平台为研究对象,从平台总体布置、关键技术参数和主要性能等方面对平台的设计特点进行介绍,并对平台稳性性能进行研究。结果表明,该平台具有较好的稳性性能,尤其是破舱稳性具有较大的安全裕量,总体布置合理。在此基础上,从稳性性能方面对平台设计提出建议,研究结论对海上风电安装平台的设计及优化具有一定的指导意义。  相似文献   

19.
海洋平台振动模糊控制研究   总被引:1,自引:0,他引:1  
周亚军  赵德有 《船舶力学》2004,8(3):116-123
在过去的三十年里,模糊逻辑控制在结构振动控制中得到了广泛的研究和应用.模糊逻辑控制具有很强的鲁棒性并且能够有效地处理非线性以及被控系统和外载荷的不确定性和不精确性,本文对于海洋平台振动模糊控制进行了研究.通过模态阻尼比的不确定性显示了模糊控制的鲁棒性,研究表明海洋平台的振动模糊主动控制是有效的、可行的,并且提高了平台的适用性和生存性.本文的方法毫无疑问为今后的海洋平台振动控制提供了一条新的途径.  相似文献   

20.
吕滨  张虹宇 《船海工程》2012,41(2):155-160
在阐述海上风机基础的种类和特性的基础上,介绍风机基础的设计要点,包括设计流程,设计的外部环境分析以及风机基础的选型等,分析各个设计阶段的要求及注意事项。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号