首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
针对目前多级加筋土挡墙动力试验研究不足的状况,通过大型振动台模型试验对地震荷载作用下双级土工格栅加筋土挡墙的动力特性进行研究。运用Bockinghamπ定理对双级土工格栅加筋土挡墙模型进行相似设计,采用标准砂作为回填砂、混凝土砌块作为挡墙和土工格栅作为筋材构成试验模型,并测试墙体和回填土的反应特性,得到土压力、墙面位移和土体加速度。试验结果表明:地震作用下挡墙立面墙体呈现倾斜并带有屈曲外鼓变形模式;挡墙水平位移、顶部沉降及分层沉降均随着地震峰值加速度增大而增大,最大值发生在挡墙顶部;随着输入地震荷载增大,砌块式挡墙缝隙中先出现淌砂,最后顶部模型砖掉落,挡墙破坏;加速度沿墙高存在放大效应,地震峰值加速度放大系数随着峰值加速度的增大而减小;下级挡墙峰值动土压力均呈现"中间大两端小"分布规律;上级挡墙峰值动土压力在小震时呈现"中间大两端小",强震时呈现"中间小两端大"分布规律;台阶处下级挡墙顶部动土压力和水平位移均大于上级挡墙底部相应值。研究成果可为双级土工格栅加筋土挡墙的抗震设计提供理论支持。  相似文献   

2.
为了研究废弃钢渣回填土工格栅加筋挡土墙在地震作用下的抗震性能,根据量纲分析理论中的Froude常数与相似比原理设计了土工格栅加筋挡土墙振动台试验模型,利用汶川地震近场什邡波(SF)和远场松潘波(SP)作为主要加载波形,以废弃钢渣为回填料,开展了土工格栅加筋钢渣挡墙的振动台模型试验。考虑地震强度的影响研究加筋挡土墙在不同地震波、不同地震强度下的墙体位移、水平加速度、回填料加速度、回填料表面竖向沉降以及土工格栅动应变等反应规律。为了将钢渣回填土工格栅加筋挡土墙的反应特性与传统砂土回填加筋挡土墙的反应特性作比较,开展了传统砂土回填土工格栅层的挡土墙抗震性能研究。试验结果表明:在不同加载强度下,远场SP波加载时的墙体加速度放大系数均大于近场SF波加载时墙体的加速度放大系数,挡土墙在加载远场SP波时比加载近场SF波时的反应更为激烈;在相同的地震波、地震强度下,通过对比钢渣和砂作为填料时的墙体和回填料的加速度、墙体变形和回填料沉降反应特征,得出质重且级配良好的钢渣作为加筋挡土墙回填料时,加筋墙体具有良好的抗震作用。在地震作用下,土工格栅应变峰值随墙高的分布情况为"上下小,中间大",与静态下格栅应变规律一致。研究结果表明废弃钢渣回填土工格栅加筋挡土墙可以应用到工程实践中。  相似文献   

3.
基于泥质红砂岩粗粒土填料,采用MTS分别模拟地震荷载、交通荷载、加-卸载多循环荷载进行大尺寸模型试验,研究了钢网面板土工格栅加筋土挡墙在上述荷载作用下的动力特性,获得了不同峰值的水平地震激励下模型挡墙不同位置的水平动位移、竖向动位移峰值响应等实测值;采用不同频率、不同幅值的竖向交通荷载正交试验法,获得了该模型挡墙在重复荷载作用下的最大水平变形、最大沉降量及位置等动力特性参数值;通过7种荷载、21组加卸载循环试验,获得了加一卸载多循环荷载作用下的实测沉降值。试验结果表明:该加筋结构具有整体变形的特性,是优良的抗震结构,能承受抗震设防烈度为9度的地震荷载;同时该加筋结构具有良好的稳定性和抗破坏性,重复荷载的幅值和振动次数对结构动力变形特性的影响较大,而振动频率对变形特性的影响不显著;多循环荷载作用下该加筋结构能够明显减小不均匀沉降。过长的筋材并不能明显地改善加筋土挡墙的动力特性。  相似文献   

4.
土工格栅加筋土挡墙在关山二路立交工程中的应用   总被引:1,自引:0,他引:1  
通过武汉市三环线关山二路立交工程实例,对土工格栅加筋土挡墙的施工过程进行较详细阐述,对施工质量控制进行简要说明,并与浆砌块石重力式挡墙进行经济分析比较,对推广土工格栅加筋土挡墙施工有实际意义。  相似文献   

5.
土工格栅加筋土高挡墙的应用与试验分析   总被引:5,自引:0,他引:5  
简要介绍梅坎铁路14m高的双级土工格栅加筋土挡墙的设计、施工、现场测试及试验研究成果,对土工格栅加筋土高档墙的设计计算方法的有关问题进行分析和探讨,提出了有益的意见和建议,积累了土工格栅加筋土高挡墙的设计施工经验。  相似文献   

6.
为研究高路堤返包式加筋土挡墙结构的荷载状态和筋土相互作用,以我国西南山区一典型的高路堤返包式加筋土挡墙为工程依托,其上部为8 m高的未加筋路肩,下部为14 m高的返包式土工格栅加筋路堤,现场安装土压力盒及筋带柔性位移计,开展为期1 a的现场监测试验,深入分析加筋土体内部垂直土压力、土工格栅应变的分布规律以及加筋土挡墙的潜在破裂面形式。测试结果表明:格栅的网兜效应在土体中形成托举力,使得土工格栅可以有效改善筋土复合体内部的应力分布,减小垂直土压力;对于上部有路肩填土作为超载的加筋路堤挡墙结构,其加筋土体可划分为"斜坡荷载影响区"和"垂直荷载影响区",两区分界位置附近的垂直土压力和土工格栅应变均出现峰值;土工格栅应变沿筋长方向呈非线性分布,距离坡面4 m内的土工格栅变形在工后有随时间增大的趋势,但筋带最大拉伸应变仅为1.32%,筋带受到的最大荷载不超过40 kN/m,远小于其极限拉伸强度(165 kN/m);由实测筋带变形推算的潜在破裂面与采用GeoStudio和Geo5数值计算的潜在破裂面趋势较为一致,但数值计算的潜在破裂面相对于实测推算更靠近加筋土体内部,路堤的整体稳定性更高,数值计算结果偏于安全。  相似文献   

7.
土工格室柔性挡墙在荷载作用下的变形性状较为复杂,本文采用岩土工程有限元分析软件Plaxis对柔性挡墙在不同工况下的变形规律进行了研究。计算分析了挡墙的高宽比、坡度以及填土表面荷载对于挡墙变形性状的影响。模拟结果表明,高宽比越大挡墙的水平位移量和自身的扰曲变形越大;挡墙顶部的水平位移随着坡度的减小而减小;填土表面荷载增大时,挡墙顶部的水平位移减小,但是总水平位移量和绕曲变形增大。模拟结果对土工格室柔性挡墙设计提供了可靠的依据。  相似文献   

8.
为了研究不同地震波作用下高陡坡土工格栅加筋土堤任意时刻任意高度结构的位移和土工格栅受力大小,以某高陡坡土工格栅加筋土堤项目为研究对象,考虑结构位移和筋材受力的主要影响因素,提出厚高比的定义。采用了数值模拟和理论分析的方法,分析了同一高度下不同填土层厚的高陡坡土工格栅加筋土堤,在地震波作用下的位移、加速度、放大倍数情况,以及结构任意高度位移筋材受力大小的计算方法。结果表明:高陡坡土工格栅加筋土堤厚高比越小,结构耗散的地震动力能量越多,抗震性越好,相反则抗震性越差;厚高比越大,地震加速度下位移和土工格栅受力越大,相反则位移和土工格栅受力越小;随着地震加速度和厚高比的增大,土工格栅单元的最大轴力呈二次型增长模式,从上到下每一层填土中心附近土工格栅轴力线性减少;不同地震加速度下不同厚高比土堤的水平位移呈非线性增长模式,并且从上到下每一层填土中心处的位移呈二次型增长;通过每一层土工格栅上受力最大点的连线,可得出地震荷载作用下的潜在滑裂面。通过理论计算结果与模拟结果做对比,发现两者数值基本接近。研究为高陡坡土工格栅土堤坑抗震设计提供理论依据。  相似文献   

9.
以四川成宜高速连接线某试验段变截面土工格室挡墙为工程依托,首先对新型拼装式土工格室挡墙的施工方法进行介绍,采用新型玻璃钢轻质面板有效解决了挡墙线形不美观并容易破损的不足;其次,通过现场监测对该挡墙的支护效果进行分析,现场监测结果表明:该挡墙不同部位的土压力沿墙高呈非线性分布,底部大,顶部小,局部会出现土压力减小的现象;挡墙同一水平高度处墙背和墙中部土压力较大,而墙面处较小,说明土压力从墙中部到墙面范围内的衰减程度较大;对墙身水平位移的监测结果表明:水平位移曲线为“S”形,存在2个位移分界点,水平位移在截面形状改变处变化明显,挡墙顶部和底部的水平位移为最大值和最小值,分别为30 mm和3 mm;对挡墙的沉降监测结果表明:该挡墙填筑施工期沉降量较大,占总沉降量的70%~90%,工后沉降很小,墙体最大沉降发生在挡墙顶部,沉降最大值仅为23 mm。最后,结合土压力计算理论分析该台阶式截面挡墙的土压力分布和墙身变形规律,结果表明该挡墙变形符合“转动+平动+绕墙底转动”模式,采用该文计算方法得到的墙背土压力与实测值较为接近,用于挡墙设计时结果更偏安全。  相似文献   

10.
地震作用下土工格栅加筋土挡土墙动力响应分析   总被引:2,自引:0,他引:2  
黎寰  汪益敏  陈页开 《公路》2012,(5):21-26
采用连续介质快速拉格朗日差分方法对一座土工格栅加筋土挡土墙地震作用下的动力响应进行了计算分析,将加筋材料中最大拉力、动土压力、加速度放大效应的数值模拟结果与FHWA和公路加筋土工程设计规范计算值进行了对比分析。计算分析表明,挡土墙面板位移与加筋材料拉力均随时间累计增加,地震持续时间对加筋土挡土墙动力影响明显;在地震末期,加筋材料拉力、动土压力数值计算值要明显大于规范计算值;地震时加速度沿墙高有明显的放大效应,加筋土挡土墙墙趾分担了相当一部分动土压力。当前规范设计方法对这些因素均未给予充分的考虑。  相似文献   

11.
土工格室生态挡墙工程性状分析   总被引:4,自引:1,他引:4  
应用Marc软件,通过模拟土工格室生态挡墙墙体、加筋层与填土的相互作用,对生态挡墙墙背的位移和应力性状进行分析,并结合实体工程进行墙背侧向土压力测试。结果表明:土工格室生态挡墙在外荷载的作用下,除了刚体位移之外,还会发生挠曲变形,具有柔性支挡结构的特点;墙背侧向土压力随着距墙顶距离的增大而增大;数值计算与现场测试得到的墙背侧向土压力变化规律一致,表明本文采用的数值模型是合理的。  相似文献   

12.
采用模型试验与数值模拟方法研究了预应力筋的预拉力对预应力加筋土挡墙的变形、土压力分布、墙面板基础反力和破坏模式等静力性能的影响,根据试验实测数据及数值计算结果分析了预应力加筋土挡墙的工作机理。结果表明:预应力筋施加预拉力后,顶部荷载作用下挡墙的墙面板位移、顶部沉降以及墙面板基础反力比未施加预拉力的情况均明显减小;预应力筋施加预拉力后,加筋区内部水平土压力显著增大,但分布并不均匀。预应力筋施加预拉力对填料内的剪切带影响不明显,但非加筋区顶部加载时,预应力筋的预拉力能够有效阻止剪切带在填筑区域内贯穿,提高了挡墙的稳定性。  相似文献   

13.
为了探讨土工格栅轴向刚度对复合地基的影响,通过有限元数值软件建立了复合路基分析计算模型并验证了其合理性,分析了不同土工格栅刚度情况下潜在滑移面、路堤稳定性、土工格栅筋材拉力、水平和竖向位移的变化规律,结果表明:改变土工格栅刚度,潜在滑移面的位置和形状无明显改变,稳定安全系数和路基沉降基本不变;筋材刚度越大,格栅拉力峰值越大,土工格栅刚度的增加对于地基加固效果有明显的作用;增大筋材刚度可以减小路堤坡脚水平位移,尤其是浅层软土的水平位移,但作用并不十分显著。  相似文献   

14.
对公路隧道下穿铁路路基拓宽改造后新老路基的沉降行为和路面结构变形机制进行了研究。结果表明,公路隧道下穿铁路路基拓宽改造后的路径不同区域的路基沉降在位移达到16~20 cm时基本趋于稳定,柔性位移计监测得到的土工格栅位移伸缩量(约2 mm)远小于破坏极限值;加土工格栅对路基路面沉降效果影响较小,但是可以对基层的附加应变起到抑制作用,从而缓解差异沉降。无论是上面层、中面层还是下面层,无荷载、静荷载、动荷载和卸载后的应变都随着距离旧路基中心线距离的增加而先增加至峰值而后逐渐减小,且应变峰值都未出现在新旧路基连接处,而是在距离路基连接处约1 m位置。  相似文献   

15.
针对旧路基加宽易导致路基发生差异性沉降而形成裂缝的问题,采用土工格栅加筋来提高路基的稳定性。通过建立加宽路基的有限元模型,获得不同土工格栅加筋对加宽路基的性能提升。结果表明:未加铺土工格栅时,原路基地表沉降曲线呈勺形,最大沉降出现在路肩处;地表水平位移曲线呈S型,以路基中心13 m为界,左侧水平位移指向内侧,最大位移为18 mm,右侧水平位移指向外侧,最大位移28.10 mm。对比不同加铺土工格栅方案对加宽路基性能的优化可以看出,铺设土工格栅来减少路基沉降效果和降低地基中应力获得的效果并不明显,但能够较好地减少路基的水平位移量。从经济角度考虑,采用第1/4/5组合,即下部铺设两层,顶部一层加铺土工格栅具有较好的效果。  相似文献   

16.
利用数值模拟研究软粘土地基加筋土土工格栅最优布置方式,着重研究首层格栅埋置深度、格栅间距、格栅层数以及格栅长度对加筋土极限承载力的影响。通过逐渐增大基础表面荷载获得荷载-位移曲线,根据曲线拐点确定地基极限承载力。研究结果表明:地基承载力随首层格栅埋置深度增加呈现先增大后减小的趋势,当首层格栅埋置深度为0.2B时,地基承载力达到峰值;格栅间距小于0.25B时,地基承载力随格栅间距增大而增大,当其大于0.25B时,地基承载力随格栅间距增大而迅速减小;地基承载力随格栅层数增加均有所提高,但当其大于4层时,地基承载力增大速率明显降低;格栅长度小于2.0B时,地基承载力随其增大而显著增大,格栅长度大于2.0B时,格栅长度增加引起的地基承载力增大较小。  相似文献   

17.
CFG桩身外侧套上内径合适的波纹塑料套管形成统一整体,能较好改善耐久性和表面受力特性,采用理想弹塑性荷载传递函数,提出了一种竖向受荷桩顶荷载与位移比计算方法。在此基础上,依托某矿区周边CFG桩工程,按照相似理论设计完成天然路基、煤矸石CFG桩复合路基、波纹塑料套管+煤矸石CFG桩复合路基、土工格栅+波纹塑料套管+煤矸石CFG桩复合路基4组模型试验,得到复合路基在加载过程中的沉降、桩土应力比、土工格栅拉应变等变化规律,初步探讨波纹塑料套管和土工格栅对CFG桩复合路基受力特点和变形规律的影响。研究结果表明:波纹塑料套管包裹桩身,能提高复合路基承载能力,降低桩土应力比和桩土荷载分担比,其中桩土应力比峰值降低29.5%,桩土身荷载分担比峰值降低7.8%,桩端阻力比与荷载呈负相关,且荷载越高,相关程度越显著;土工格栅作用于碎石垫层,桩土应力比提升幅度为10.7%~23.5%,桩土荷载分担比提升幅度为2.9%~8.4%,路基整体沉降、桩端阻力比进一步降低;随着荷载不断增加,土工格栅拉应变提升幅度越来越快,其中桩顶土工格栅拉应变最大,四桩区域中心最小,验证了土工格栅的张拉膜效应。  相似文献   

18.
新型加筋土挡墙在重复荷载作用下的变形试验研究   总被引:1,自引:0,他引:1  
黄向京  许桂林  王维  刘泽 《公路工程》2009,34(6):8-11,15
以湖南湘潭至衡阳高速公路西线加筋格宾挡墙为工程背景,通过MTS万能材料试验机模拟交通荷载,对加筋格宾挡墙、绿色加筋格宾挡墙和钢网面板土工格栅加筋土挡墙三种加筋挡墙分别施加五种频率(2、4、6、8、10Hz)、四种幅值(30~60、40~80、50~100、60~120kPa)的交通荷载,每种幅值不同频率时竖向荷载作用次数不少于10万次,每种幅值不少于40万次,每种加筋挡墙累计荷载作用次数不少于200万次。得到了三种新型挡墙在竖向疲劳荷载作用下的最大水平变形、最大沉降量位置及最大累计水平变形率、最大累计沉降变形率的大小,总结了三种挡墙在不同动应力幅值、不同频率的重复荷载作用下的疲劳力学特性。所得结果为上述三种加筋结构在交通荷载作用下的工程应用提供了设计参数。  相似文献   

19.
以大型振动台模型试验为手段,以昆明市某边坡为原型,对地震作用下桩板式抗滑挡墙加固边坡的加速度、位移和动土压力响应的分布特征和变化规律进行研究。以大瑞人工波为研究对象输入地震波,设计相似比为1∶20的桩板墙加固边坡模型与自然边坡开展对比实验。研究表明:自然边坡在Ⅷ级地震烈度下,边坡体后缘产生大量张拉裂隙,后缘与母体脱空,具备滑坡的前兆特征,与自然边坡试验现象比较,桩板墙加固边坡的抗震稳定性较好,边坡在设防烈度(Ⅷ基本烈度)范围内保持稳定;当加载地震波峰值加速度相对较小时,水平加速度延高程有明显放大效应,会对自然边坡稳定性产生不利影响;当加速度相对较大时,有水平加速度延高程既出现放大现象也产生缩小现象;桩板墙加固后边坡对地震波的放大效应明显比自然边坡土体小,说明桩板墙能有效减弱边坡的震动效应;在地震动激励下,动土压力峰值随着加载地震波幅值的增大而增大,在同一加载工况下,离桩顶越远,动土压力峰值越大,桩板墙最大土压力出现在靠近桩板墙底的位置。试验结果有助于揭示该结构抗震机制,可为支挡结构的选取与桩板墙结构抗震设计提供依据。  相似文献   

20.
《公路》2021,(5)
上部荷载作用下加筋土挡墙的变形与力学响应特性研究较少,通过有限差分数值模拟与模型试验对比分析,验证了数值方法可靠性,进而研究荷载作用位置、填土内摩擦角和加筋参数等因素对加筋土挡墙变形和力学响应的影响。结果表明:增加填土内摩擦角、荷载作用宽度或加密筋材可显著提高挡墙极限承载力,且同级荷载时挡墙顶部沉降减少明显;内摩擦角和加筋间距影响挡墙极限承载力最大值所对应的偏移距离,但不影响允许承载力随偏移距离的变化规律;内摩擦角变化范围为31°~40°时,挡墙极限承载力为允许承载力的2~4倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号