首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
混凝土箱梁顶板横向预应力框架效应分析   总被引:4,自引:0,他引:4  
针对目前预应力混凝土箱梁腹板开裂现象比较普遍这一现象,拟从预应力混凝土箱梁顶板横向预应力框架效应查找开裂原因。首先,分析了箱梁截面参数对顶板预应力横向框架效应的影响,然后结合具体预应力混凝土连续箱梁桥,分析了预应力混凝土箱梁顶板横向框架效应所引起的腹板竖向拉应力,得到了一些有意义的结论,可为改进该类桥梁的设计提供参考。  相似文献   

2.
预应力混凝土箱梁桥具有结构形式简单,跨越能力较大,施工方便等优点,在现代桥梁工程中广泛采用。但薄壁箱梁混凝土施工质量控制难达预期,箱梁混凝土施工质量是影响大跨预应力混凝土箱梁桥开裂的关键原因之一,混凝土材料的本质特征使其开裂较难控制,对于混凝土薄壁箱梁尤为如此。大跨径预应力混凝土薄壁箱梁桥所采用的高强混凝土,其原材料选择、混凝土配比、施工及养护工艺理应有其独特要求,但迄今国内相关的设计与施工规范对此并未引起注意,结合高强混凝土薄壁箱梁的特征提出大跨径预应力混凝土箱梁桥施工质量控制措施。  相似文献   

3.
介绍了哈尔滨三环西线松花江大桥引桥简支转连续组合小箱梁横隔梁的预应力设计情况,分析了施加预应力前后组合小箱梁横隔梁的受力特征。结果表明:若不施加预应力,在汽车荷载作用下组合小箱梁横隔梁下缘拉应力较大,混凝土截面将会开裂;施加设计的预应力后,运营阶段组合小箱梁横隔梁下缘处于受压状态,最小压应力-1.8 MPa,混凝土截面不会开裂。  相似文献   

4.
分析了大跨径预应力混凝土连续梁桥底板开裂的原因,并以秦淮河特大桥为依托,对大跨径预应力混凝土连续梁桥合龙施工进行了探讨,提出了一些保证桥梁预应力度和避免箱梁底板开裂的方法和措施。  相似文献   

5.
刘昀  邓晓杰 《湖南交通科技》2011,(4):99-101,148
预应力混凝土箱梁桥腹板斜裂缝是结构性裂缝,受腹板纵向预应力布置方式和竖向预应力大小的影响。在收集整理国内外已建与在建的预应力混凝土箱梁桥腹板开裂成因的基础上,以两座大跨径预应力混凝土箱梁桥为例,有针对性地从设计方面分析顶板束、腹板下弯束和底板束对腹板主拉应力计算的影响,并提出一些相应预防措施。  相似文献   

6.
介绍了预应力箱梁桥的有限元分析方法,基于ANSYS二次开发了预应力箱梁桥有限元分析模块,能够计入材料与几何非线性影响,可用于预应力箱梁桥的受力特性分析及局部应力分析.利用开发的模块,采用Solid45单元模拟混凝土,Link8模拟预应力束,建立预应力混凝土箱梁桥的精细化有限元模型,对钱江通道南接线大宽跨比现浇箱梁进行分析,验证了此建模方法的实用性.  相似文献   

7.
为了验证变截面预应力混凝土箱梁桥的病害产生原因,实地随机调查交通量并确定三种典型荷载工况,用有限元软件建立了梁桥模型并进行了结构计算分析。研究结果表明:超载是该桥产生箱梁底板横向开裂的主要原因,竖向预应力失效导致腹板内侧开裂严重,纵向预应力钢束定位偏差易导致底板混凝土分层劈裂。  相似文献   

8.
在役预应力混凝土连续箱梁桥腹板开裂对桥梁的耐久性和营运安全构成极大的威胁,分析预应力箱梁腹板裂缝的变化规律及产生原因,对预应力混凝土箱梁桥的加固和设计配筋提出建议。通过总结北碚嘉陵江大桥在役10年来箱梁腹板的裂缝分布和状态,发现腹板裂缝集中分布位置和裂缝状态,在此基础上分析各种裂缝产生的力学原因,优化预应力混凝土箱梁桥设计配筋。  相似文献   

9.
连续刚构桥箱梁腹板开裂原因分析   总被引:5,自引:1,他引:5  
预应力混凝土桥梁开裂具有一定的普遍性。针对东明黄河大桥主桥箱梁腹板开裂问题进行了桥梁检测,通过有限元分析和平面杆系模型验算,对箱粱腹板开裂原因进行了分析,提出了针对性的建议。  相似文献   

10.
前言箱梁设置竖向预应力的目的是为减小主拉应力,防止腹板开裂。然而大量的混凝土箱梁桥在腹板施加竖向预应力后,施工和运营过程中腹板还是存在不同程度的开裂现象,交通部规划设计研究院曾对部分省市修建的预应力混凝  相似文献   

11.
为研究圆管翼缘组合梁的抗弯性能, 进行了3根圆管翼缘组合梁静力加载抗弯破坏性试验, 分析了试验梁的抗弯破坏过程与破坏特征; 考虑混凝土损伤塑性本构及栓钉滑移与断裂, 建立了圆管翼缘组合梁非线性数值模型, 基于试验结果分析了数值模型的适用性; 以钢梁下翼缘宽度、混凝土翼板厚度与圆管管径为主要结构参数, 计算了48根正交设计的圆管翼缘数值模型组合梁的力学性能; 依据试验梁与数值模型梁的抗弯受力性能, 提出了基于简化塑性理论的圆管翼缘组合梁极限抗弯承载力计算公式; 应用数值模型梁位移延性系数计算结果, 回归得到了圆管翼缘组合梁位移延性系数计算公式。计算结果表明: 数值模型组合梁与试验梁承载力比值为0.99~1.03, 挠度比值为0.87~1.09, 因此, 弯矩-挠度计算曲线与试验曲线吻合良好, 可采用数值模型组合梁准确模拟圆管翼缘组合梁的抗弯全过程受力行为; 圆管翼缘组合梁极限抗弯承载力随钢梁下翼缘宽度、混凝土翼板厚度的增大而增大, 随圆管管径的改变变化较小, 位移延性系数随混凝土翼板厚度与圆管管径平方的增大呈线性增大, 随钢梁下翼缘宽度的增大呈线性减小; 不同塑性发展程度的各类模型梁位移延性系数为3.16~7.19, 体现了较好的延性; 采用极限抗弯承载力简化计算公式与圆管翼缘数值模型组合梁计算的极限抗弯承载力比值为0.91~1.09, 平均比值为0.98, 因此, 公式计算结果准确; 为使圆管翼缘组合梁具有一定延性, 建议位移延性系数大于3.5。   相似文献   

12.
高强钢-混凝土组合梁受力性能分析   总被引:2,自引:0,他引:2  
为研究高强钢-混凝土组合梁中结构几何参数及材料强度对组合梁受力性能的影响,建立了14组构件在跨中两点对称荷载作用下的有限元数值模型,对其受力性能进行了分析。分析结果表明:在承载能力极限状态下,钢梁的贡献占竖向抗剪强度约77.0%;在弹性与塑性阶段,不同材料强度的组合梁的跨中最小与最大挠度比值分别为79.5%和28.0%;在塑性状态下,不同混凝土板横向配筋率和宽度的组合梁的跨中最小与最大挠度比值分别为62.1%和53.3%,不同材料强度、混凝土板宽度、横向配筋率和厚度的组合梁的最小与最大纵向滑移量比值分别为25.0%、41.9%、63.2%、70.7%。可见,提高钢梁强度或增大钢梁尺寸可显著提高组合梁竖向抗剪能力;材料强度对组合梁弹性工作阶段的跨中挠度影响较小,混凝土板横向配筋率及其宽度对塑性状态下跨中挠度有较大影响;弹性工作阶段材料与几何参数对组合面滑移的影响不明显,塑性状态下材料强度、混凝土板宽度、横向配筋率及厚度对纵向滑移影响较大。  相似文献   

13.
在实桥观测与实验研究的基础上,论证了大气变温对混凝土箱梁的作用,探讨了混凝土箱梁在日辐射作用下所产生的温度场及其影响。  相似文献   

14.
结合我国高速铁路的需要,通过有限元分析手段,以24m跨度先、后张梁为分析对象,对先张混凝土箱梁进行应力、刚度、剪力滞后、畸变、翘曲、支座脱空效应、局部效应等力学性能的分析,并与后张梁进行对比,论证了先张箱型梁在高速铁路中应用的可行性。  相似文献   

15.
对3片足尺预应力混凝土空心板梁进行抗弯性能试验, 其中1片足尺梁不进行加固, 2片分别采用钢板-混凝土组合加固和钢板-预应力混凝土组合加固, 分析了试验梁主要部位的应变、滑移、裂缝分布、承载力、刚度和延性; 基于试验梁塑性破坏机理, 并考虑二次受力的影响, 推导了足尺试验梁的抗弯极限承载力计算公式。试验结果表明: 加固后试验梁的破坏形态表现为塑性弯曲破坏, 跨中横截面变形符合平截面假定; 组合加固钢板与新混凝土之间以及加固部分与原结构之间相对滑移小于0.05mm, 因此, 加固后试验梁各部分协同工作性能较好; 与未加固梁相比, 钢板-混凝土组合加固试验梁抗弯极限承载力提高了1.08倍, 钢板-预应力混凝土组合加固试验梁抗弯极限承载力提高了1.43倍, 因此, 组合加固能显著提高试验梁的极限承载力; 与未加固梁相比, 2片加固试验梁的延性系数均提高了21%, 当试验荷载为200kN时, 2片加固试验梁刚度分别提高了1.55、3.07倍, 因此, 组合加固能显著提高试验梁的刚度和延性; 与钢板-混凝土组合加固技术相比, 钢板-预应力混凝土组合加固技术对试验梁在使用阶段的承载性能和刚度的提高更加明显; 2片加固试验梁抗弯极限承载力的计算值与试验值的比值分别为0.94和0.96, 因此, 抗弯极限承载力计算公式计算精度较高, 可用于钢板-混凝土组合加固预应力混凝土空心板梁的抗弯承载性能计算与分析。   相似文献   

16.
克服大跨PC连续刚构桥后期下挠设计措施   总被引:5,自引:0,他引:5  
对比分析几座大跨径预应力连续刚构桥后期下挠过度引起梁体开裂的主要设计参数,阐述了引起后期下挠的主要原因.为提高箱梁持久抗剪承载力,提出构造措施上可供参考的设计参数,并提出克服箱梁后期持续下挠的具体措施,有效地保障梁体处于健康状态.  相似文献   

17.
对比分析几座大跨径预应力连续刚构桥后期下挠过度引起梁体开裂的主要设计参数,阐述了引起后期下挠的主要原因.为提高箱梁持久抗剪承载力,提出构造措施上可供参考的设计参数,并提出克服箱梁后期持续下挠的具体措施,有效地保障梁体处于健康状态.  相似文献   

18.
对受扭组合结构箱梁进行理论分析,提出了配筋率与混凝土破坏模态和钢筋屈服模态之间的相互关系.提出了组合结构箱梁的扭转极限承载力计算方法.通过与实验结果进行比较,验证了所提出计算方法的正确性.  相似文献   

19.
考虑不同加载方式与下翼缘宽度, 对3根带混凝土翼板的圆管翼缘钢-混凝土组合梁进行抗弯性能试验, 分析了试验梁的抗弯承载性能与破坏形态; 基于试验梁的抗弯特征, 推导了组合梁屈服弯矩和极限弯矩简化计算公式。研究结果表明: 试验梁均发生典型的塑性弯曲破坏, 稳定性良好; 达到极限承载力时, 梁端处上翼缘钢管与混凝土翼板相对滑移均小于0.43 mm, 试验梁体现了良好的协同工作性能; 随下翼缘宽度的增加, 试验梁刚度与承载力增大, 对于下翼缘宽度分别为150、260、300 mm的试验梁, 其屈服弯矩的比值为1∶1.44∶1.55, 极限承载力的比值为1∶1.31∶1.40;随着试验梁承受弯矩的增大, 当中性轴上升至混凝土翼板时, 钢管混凝土处于受拉状态, 可不考虑钢管与内填混凝土的套箍效应, 而当塑性中性轴位于上翼缘钢管混凝土内时, 可不计入该套箍作用对极限抗弯承载力的影响, 但其可促进延性的继续发展; 试验梁的位移延性系数均大于3.35, 延性较好; 屈服弯矩、极限弯矩理论计算值与试验值的比值分别为1.02~1.04、0.96~1.03, 吻合良好, 因此, 所出提出的简化理论计算公式简单、可靠。   相似文献   

20.
对受扭组合结构箱梁进行理论分析,提出了配筋率与混凝土破坏模态和钢筋屈服模态之间的相互关系。提出了组合结构箱梁的扭转极限承载力计算方法。通过与实验结果进行比较,验证了所提出计算方法的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号