首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 578 毫秒
1.
为保证大跨度钢-混组合梁斜拉桥成桥后的主梁线形和结构各部位的受力均满足规范要求,以赤壁长江公路大桥为研究对象,考虑几何非线性因素建立有限元模型,对桥梁施工全过程进行仿真模拟.研究了成桥状态的主梁线形、控制截面应力、斜拉索索力对钢主梁的重量和弹性模量、桥面板的重量和弹性模量、拉索的弹性模量及温度误差的敏感程度.研究结果表明:钢主梁重量、桥面板重量、拉索弹性模量及温度误差对成桥状态结构行为的影响显著,而钢主梁弹性模量和桥面板弹性模量误差的影响较小.研究结果可为其施工控制中的误差修正、关键控制量确定等提供依据,也可为类似桥梁工程施工提供参考.  相似文献   

2.
针对千米级混合梁斜拉桥施工期结构受力特点及制造加工和安装阶段面临的主要问题,基于几何控制理论,以主跨926 m的鄂东长江公路大桥为依托,研究斜拉索无应力长度及主梁几何线形控制方法。结果表明:以理想成桥线形、索力为目标,通过对制造及安装阶段全过程无应力状态量的调整,安装阶段将无应力线形、无应力索长的控制转换成夹角、引伸量的控制,该方法易规避不良施工效应、施工误差,高效快捷、精度高,同时能降低环境带来的不良影响。施工实践表明实测数据与理论计算吻合很好,证实了该方法的有效性和可靠性。  相似文献   

3.
为确保千米级混合梁斜拉桥施工监控的高效性、高精度以及安全性,以鄂东大桥为背景,通过理论分析、有限元数值计算,在充分考虑结构非线性效应,并结合现场实际及工程面临问题的基础上,开展了特大跨度混合梁斜拉桥施工监控理念、监控方法及监控内容研究,构建了适用于该复杂结构的监控体系.首先,根据千米级混合梁斜拉桥施工控制特点及面临的问题和挑战,基于几何控制理论,构建了双目标监控体系;其次,根据双目标控制系统关键问题,重点针对初始无应力状态量的确定、关键构件计算分析、制造浇筑及安装控制、施工期安全稳定等问题进行深入研究,得到了其计算分析及安装控制方法;最后,利用建立的监控体系,对鄂东桥进行了全过程控制.研究结果表明:采用的监控系统,制造阶段误差梁顶最大为16 mm,轴线误差2.7 mm,累计梁长误差10.8 mm;非线性稳定安全系数最小2.5,满足要求;边跨混凝土线形最大误差11 mm,中跨钢箱梁最大误差157 mm;塔偏相对误差为L/12 434,混凝土梁单根拉索索力最大误差为4.50%,钢梁索力最大为6.30%,全桥应力合理,监控各项指标均满足规范要求.   相似文献   

4.
大跨度斜拉桥多维多点随机地震激励响应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究大跨度斜拉桥地震激励下的平稳随机响应规律,以某大跨度斜拉桥为例,用ANSYS软件建立了三维有限元分析模型.考虑地震动的多维性、行波效应、部分相干效应及局部场地效应对主梁及主塔位移和内力随机响应的影响,用该模型分析了大跨度斜拉桥在多维多点地震激励下的响应.研究结果表明:相对于一致激励,大跨度斜拉桥在多维多点激励下的结构响应显著增大,主梁的纵向位移增大了约2.3倍,①号塔顶的纵向位移和塔底横向弯矩分别增大了约2.2和2.3倍;仅考虑一致地震激励不能保证大跨度斜拉桥的结构安全;考虑行波效应时斜拉桥的地震响应减小,相干效应较小可忽略,软场地条件下结构的地震响应更大.   相似文献   

5.
在大跨度PC斜拉桥施工过程中,由于顶板和梁高尺寸控制不严,常存在超方现象.为纠正超方对主梁线形和塔偏的影响,通过现场实测,得到每个梁段的超方百分比和中、边跨超方的分布规律.在此基础上,对超方引起的线形和塔偏误差进行预测.通过影响矩阵,建立了可调参数与目标状态参数之间的关系方程.采用最小二乘法对该方程进行求解,得到调整超方影响的优化调整措施.由实桥调整后的正装计算结果表明:该方法在理论上能显着减小超方带来的线形和塔偏误差,有效地保证了成桥目标状态的实现.  相似文献   

6.
大跨度PC斜拉桥是设计、监控、施工高度耦合的结构,而主梁的线形控制效果是PC斜拉桥施工质量的重要指标之一,也是重点和难点。以济南市纬六路斜拉桥为例,结合该桥的具体施工方案和施工工艺,阐述了主梁的施工流程、施工控制理论与方法,对设计上采用斜拉索一次张拉到位的设计理念给施工控制带来的许多问题,通过采用先进的“双控”方法,建立可行的施工控制方案,并提出了一些实用的处理方法,解决了主梁线形控制问题并减少了调索程序,可为PC斜拉桥设计、施工、监控提供一定的参考。  相似文献   

7.
基于灰色残差新陈代谢模型的悬臂施工主梁标高误差预测   总被引:1,自引:0,他引:1  
以PC斜拉桥施工节段主梁悬臂端标高误差为研究对象,利用灰色残差新陈代谢模型GM(1,1)对其进行分析预测,探讨了原始误差序列的数据取舍、应用条件和预测效果.结果表明,在分施工节段的前提下,该模型能进一步弱化偶然误差,预测下阶段误差的近似值,具有工程实际应用价值,同时对如何提高预测精度和适用范围做了相关研究.  相似文献   

8.
大跨度混合梁斜拉桥参数敏感性分析   总被引:2,自引:0,他引:2  
为了提高大跨度混合梁斜拉桥的施工控制精度,通过计算比较梁重、斜拉索张拉力、斜拉索的刚度等设计参数在成桥时对主梁挠度、主梁应力和索力的影响程度,分析了各设计参数的敏感性.计算结果表明,大跨度混合梁斜拉桥主要设计参数有梁重和拉索张拉力,而索的刚度对成桥状态影响不大.通过修正主要设计参数,同时忽略次要设计参数的影响,对荆岳长江公路大桥进行施工控制.成桥测试结果表明,拉索索力与成桥线形状况良好,均在误差控制允许的范围内,其中索力误差小于5%,主梁标高偏差小于65mm.  相似文献   

9.
以徐州和平路斜拉桥的施工为背景,分析独塔双跨混凝土斜拉桥主梁施工线形控制中的有关问题,重点强调立模标高的准确性和施工过程中主梁标高误差的控制原则,对该桥的主梁施工线形进行了有效控制。  相似文献   

10.
从结构变形、压屈稳定性、风动稳定性等角度探讨了当前材料水平和施工水平下全自锚斜拉桥结构体系的极限跨径。研究表明:控制斜拉桥设计的工况首先是横向极限静阵风作用,其次才是活载作用,设计中首先要解决主梁的侧向刚度问题;当前条件下建设一座主跨1 500 m左右的自锚式斜拉桥是初步可行的。通过极限跨径分析,提出了进一步增大斜拉桥跨径的技术措施,可供超大跨度斜拉桥概念设计时参考。  相似文献   

11.
随着斜拉桥跨度的增大,其几何非线性因素影响越来越明显,这就需要寻求考虑几何非线性影响的特大跨度斜拉桥施工线形预测方法。文章分析BP神经网络算法的基本原理及改进措施,借助Matlab语言建立预测模型,探讨其在特大跨度斜拉桥施工控制中的应用。以某主跨为1088m的特大跨度钢箱梁斜拉桥为工程背景,验证该方法的合理性和可行性,为同类型桥梁的线形控制提供参考。  相似文献   

12.
特大跨度斜拉桥变形的几何非线性效应分析   总被引:1,自引:0,他引:1  
为了充分考虑几何非线性的影响,以某主跨1088m的特大跨度斜拉桥为工程背景,考虑初始安装线形的影响,按线性、不考虑斜拉索垂度的部分几何非线性和完全几何非线性3种模式计算了结构施工全过程的响应,分析了悬臂施工过程中及全桥合龙后主梁变形的几何非线性效应.结果表明,随斜拉索长度和主梁悬臂长度的增大,结构的几何非线性效应显著增大,斜拉索垂度效应对斜拉桥几何非线性效应的贡献达70%以上.  相似文献   

13.
分析了大跨径斜拉桥施工控制和结构分析中零杆虚位移的成因及其导致的计算误差,提出了基于无应力状态法理论的误差修正方法。通过算例验证,表明该方法是有效的,对于桥梁的有限元误差分析具有一定参考价值。  相似文献   

14.
为了研究大跨度斜拉桥在外激励作用下发生的索-梁相关振动,基于非线性振动理论建立了拉索发生大幅度非线性振动的理论方程,开发了有限元索动力单元;建立了某大跨度斜拉桥全桥有限元模型,在此基础上,使用索动力单元模拟斜拉索;最后,以一座具有代表性的大跨度公路斜拉桥为例,研究了在不同工况的外激励作用下斜拉桥发生索-梁相关振动的特性.研究结果表明:在斜拉桥全桥尺度下研究索-梁相关振动更为合理;斜拉桥的索-梁相关振动是一个能量传递过程;在外激励作用下,拉索 1:1 主共振更容易发生,2:1 参数共振相对不容易发生;靠近桥塔位置的较短拉索不容易发生较大幅度的振动.   相似文献   

15.
悬臂浇注施工斜拉桥的误差控制方法   总被引:1,自引:0,他引:1  
在预应力混凝土(PC)斜拉桥悬臂施工中,为了减小索力及线形误差,分析了误差原因及其控制现状,提出了模型误差及悬浇效应误差的控制方法。结合三维实体等参元和板壳单元的优点,构造了适用于复杂桥梁结构空间分析的实体退化单元,建立了离散钢筋模型。根据挂篮牵索锚固点处的变形协调条件,推导出牵索索力随混凝土浇筑的增量计算公式,建立了悬浇过程中各工况下挂篮前端标高控制的计算公式。应用结果表明:在悬浇施工过程,牵索索力控制精度达到了3%,成桥索力控制精度达到5%,悬臂端标高误差控制在1 cm内,因此,提出的控制方法可实现PC斜拉桥悬浇过程各工况下索力及线形的准确预测。  相似文献   

16.
部分斜拉桥是最近十多年发展起来的一种经济桥型,其结构特性介于连续梁桥和斜拉桥之间,适合跨径100m~300m的PC梁桥。针对开封桥塔多、连续长度长、桥面宽的特点,对传统部分斜拉桥的设计参数进行了优化。采用MIDAS/Civil桥梁专用程序对开封桥进行结构静力特性分析,说明部分斜拉桥普遍的力学特性和开封桥的个性特点,为今后同类型桥梁的设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号