首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
为探明铁路隧道救援站内的拱顶温度,以高黎贡山隧道为背景,建立考虑纵坡的1:10铁路隧道救援站及列车缩尺寸模型,研究不同火源位置(高端、中部和低端)在不同通风模式(自由蔓延、纵向通风和半横向通风)下对救援站拱顶温度纵向分布的影响.结果 表明:自由蔓延模式下,火源位于隧道中部时拱顶温度最高,达到940℃,远高于其他2种模式...  相似文献   

2.
为研究高海拔特长隧道定点防灾救援设计中不同火灾场景下救援横通道数量对人员疏散的影响,依托关角隧道对高海拔条件下火灾发展及人员疏散过程进行研究。利用FDS火灾模拟软件对关角隧道救援站进行高海拔条件下的火灾数值模拟计算,通过改变火源热释放速率以及救援横通道数量,得到不同火灾场景下可用安全疏散时间。利用人员疏散软件EXODUS对不同场景下高海拔地区人员疏散过程进行模拟,得到必需的人员疏散时间,通过与可用疏散时间的比较,最终确定高海拔特长铁路隧道定点救援站合理的救援横通道数量为8~9座。  相似文献   

3.
研究目的:紧急救援站防灾通风系统设计是特长铁路隧道防灾系统设计的一个关键问题,合理优化的防灾通风系统直接关系着灾害时人员的安全疏散。本文采用网络通风计算方法,主要对单洞单线隧道平导救援站内防灾通风系统进行优化研究,并考虑自然风对紧急救援站风流分布的影响,从而确定合理的防灾通风系统。研究结论:(1)提出了一种适用于平导救援站的优化防灾通风系统方案;(2)探明了自然风对紧急救援站联络横通道内风速分布的影响规律,建议对隧道内自然风进行长期监测,并在紧急救援站两端增加布置一定数量的射流风机;(3)该研究结果可对特长铁路隧道防灾救援系统的设计提供指导。  相似文献   

4.
依托敦格铁路(敦煌—格尔木)高原高海拔隧道工程,通过计算火灾不利场景下人员疏散时间,验证了隧道内紧急救援站疏散救援通道设计的可靠性,提出了列车在隧道内着火情况下,车内火灾处置方案及人员安全快速疏散策略。开发了具有二级架构的新型隧道防灾疏散救援机电设备监控系统,提出了基于新型机电设备监控系统的乘客在紧急救援站内定点疏散救援应急预案,并给出具体的实施步骤。可为类似防灾疏散救援工程的设计和安全运维提供参考。  相似文献   

5.
采用网络通风算法,确定铁路隧道紧急出口及隧道口救援站内防灾通风工况下的射流风机型号及数量;采用三维数值方法,研究紧急出口辅助坑道内及隧道口救援站平行导洞内射流风机安装位置对防灾通风效果的影响,提出射流风机安装位置与防护门及隧道口救援站最外侧联络通道之间的距离建议值。结果表明:对于单车道辅助坑道紧急出口,射流风机安装位置与防护门之间距离宜大于10.9倍辅助坑道断面当量直径;对于双车道辅助坑道紧急出口,射流风机安装位置与防护门之间距离宜大于7.4倍辅助坑道断面当量直径;对于隧道口救援站,平导内射流风机应安装于靠近平导出口侧,与最近横通道之间距离宜大于8.3倍平行导洞断面当量直径。  相似文献   

6.
研究目的:随着铁路特长隧道数量的不断增加,特长隧道的运营安全成为运营部门关注的焦点,本文通过对国内外特长隧道火灾应对策略及火灾工况下疏散模拟等方面进行对比分析,从而为解决隧道火灾疏散安全及单、双洞设置模式提供理论依据和工程实例。研究结论:(1)列车在隧道内着火时,绝对安全是不可能实现的,但可以通过合理的措施把风险降低到一个可以接受的低水平;(2)疏散安全主要取决于紧急救援站(隧道外比紧急救援站更安全)的间距;(3)按20 km的间距设置紧急救援站后,火灾列车不能到达紧急救援站的概率仅为0. 01%,这个概率与单、双洞方案无关;(4)合理设置通风排烟及疏散工程后,特长隧道可以采用单洞双线方案;(5)本研究成果将主要应用于隧道防灾疏散救援和选线领域。  相似文献   

7.
基于对地铁车站火灾产物影响的分析,以广州地铁13号线白江站为研究对象,使用PyroSim软件构建地铁车站火灾排烟模式仿真模型,对地铁车站火灾烟气扩散特性、火灾产物发展趋势等进行仿真分析。在此基础上,提出以加快烟气消散速度、减缓温度上升速度和增加能见度距离为优化目标的6种优化方案,并进行仿真对比分析。结果表明:当火源位于站台中部时,在站台加设排风机可有效提升火灾排烟效率,同时在部分区域设置有效高度的挡烟垂壁可对烟气控制起到有效的辅助作用。  相似文献   

8.
运用火灾动力学模拟软件FDS,对广州某一地铁车站岛式站台端部发生5MW火灾的情况进行数值模拟研究,对比分析不同排烟模式下地铁站内的顶棚温度分布、人眼特征高度处温度、能见度、CO浓度分布以及楼梯口风速分布情况,分析其排烟效果是否满足人员安全疏散的要求。结果表明,对于顶棚温度和人眼特征高度处能见度而言,3种排烟模式都能满足要求。对于楼梯口新风风速而言,排烟口为11个的排烟模式不满足要求。比较3种模式下温度和CO浓度的扩散范围,发现排烟口为22个的排烟模式的控烟效果较好,更有利于人员的安全疏散。  相似文献   

9.
区间隧道火灾时的温度场分布是保障隧道结构安全与制定人员疏散方案的重要依据。根据市域快线列车车厢内部不同因素引发火灾的常见位置,通过数值模拟的方法研究市域快线列车内部不同位置火灾对隧道温度场分布的影响。研究结果表明:1)在1~3 MW火灾中,行李火灾、人为纵火常见位置对隧道拱顶温度影响较大;在4~5 MW火灾中,设备火灾常见位置对隧道拱顶温度影响较大。隧道拱顶的高温区出现在火灾车厢某个客室侧门上方。2)隧道拱顶最高点处温度峰值的最大值常出现在车厢端部客室侧门处。在火灾车厢范围外,隧道拱顶最高点处温度呈指数衰减,且纵向轴线上的火源越靠近车厢中心,隧道拱顶最高点处温度衰减越慢。3)当火源位于车厢内,疏散平台上方的拱顶温度受影响范围较小、峰值较高,当火源位于贯通道内其受影响范围较大、峰值较低,且每个客室侧门处均形成了峰值。4)市域快线列车内部火灾会对3~4节车厢范围内的疏散平台2 m高处温度产生显著影响,在此范围内客室侧门正对的位置形成峰值。当火源功率达到3 MW时,疏散平台开始出现危险区域;当火源功率达到4 MW以上,不同火灾位置时疏散平台均会出现危险区域。行李火灾、人为纵火常见位置的火灾场...  相似文献   

10.
研究目的:针对城市铁路隧道的特点,进行火灾时的消防及逃生分析,本文主要就单洞双线隧道提出几种防灾疏散逃生方案及主要消防设施的布置原则,供今后城市铁路隧道消防设计参考。研究结论:平行设置专用疏散通道、垂直主隧道设置紧急出口或在隧道中部设置救援站,是常用的几种防灾疏散方案;隧道宜结合竖井设置纵向排烟;隧道内外均应考虑消防给水水源及设备。  相似文献   

11.
为了提高地铁车站站厅层公共区的排烟效率,针对郑州某地铁车站站厅层公共区设计了不同的排烟工况。通过利用FDS模拟软件对不同的排烟工况进行仿真模拟,得到下排烟口、侧排烟口、顶排烟口3种工况下温度、能见度、CO浓度随时间的变化图,通过对比分析得出结论:侧排烟口、顶排烟口、顶排风口均能满足人员的安全疏散要求;侧排烟口、顶排烟口比下排烟口的排烟效果好,侧排烟口和顶排烟口的排烟效果基本相同。通过进一步比较侧排烟口个数及大小对人员安全疏散的影响,得出:6个侧排烟口、3个侧排烟口比12个侧排烟口的排烟效果好;6个侧排烟口与3个侧排烟口的排烟效果基本相同。  相似文献   

12.
目前对高海拔铁路隧道火灾的研究较少。本文应用火灾动态仿真模拟软件(Fire Dynamic Simulation,FDS)对海拔500,3000 m铁路隧道内的火灾烟气蔓延进行了数值模拟分析,对比了高海拔环境低温、低压、低氧等显著特征及纵向风速对隧道火灾的影响。结果表明,在本文的火灾计算条件下海拔3000 m时隧道内的最高温度比低海拔时低24.8%,CO浓度增大30%~50%;海拔3000 m时随着纵向风速增加,拱顶最高温度显著下降,最大降幅达62.5%,且最高温度点向下游偏离火源区边缘上方;火源上游温度减小且升温范围逐渐减小,纵向风对上游烟气的“稀释”“阻拦”作用强于下游。  相似文献   

13.
为得到列车在长大铁路隧道内发生火灾时人员疏散的时间和速度,针对2种情况进行人员疏散全过程的试验和数值模拟研究。着火列车继续运行,着火车厢内的人员疏散至相邻车厢;着火列车停车,人员下车并疏散至隧道的紧急救援站或紧急出口。结果表明:当着火车厢满员时,相邻车厢超员40.0%比相邻车厢满员时需要的人员疏散时间多约2min,平均疏散速度下降45.7%;当隧道内疏散出口宽度(3m)满足人员疏散不过度拥挤的条件下,紧急救援站单侧疏散和紧急出口处双侧疏散2种疏散路径的人员疏散平均速度基本相等;在每节车厢均开启2扇外门的条件下,2扇外门位于车厢一端双侧要比位于车厢两端单侧时的人员疏散效率慢,平均疏散速度下降约21.6%;在铁路隧道内,青壮年男性、女性的疏散速度可分别定为1.2和1.0m·s-1,此速度可作为确定其他人群(老年人、儿童等)疏散速度的折减基数。  相似文献   

14.
为确定隧道防灾疏散设计原则与防灾救援设计参数,以崇太长江隧道为背景,通过火灾工况下列车停靠位置进行分析,明确隧道防灾疏散原则,结合土建工程,提出3种防灾疏散方案:方案一,2号竖井作为紧急出口;方案二,2号与3号竖井作为紧急出口;方案三,1号、2号与3号竖井均作为紧急出口。采用疏散仿真模拟,以疏散时间作为对比指标进行对比评价,确定疏散口最优间距、合理疏散方案、避难所布设参数及救援方案。研究结果表明,当火灾列车在残余动力运行下不发生在隧道内停靠的情况时,防灾疏散救援仅针对列车故障工况;随疏散口间距增大,安全疏散时间与拥堵时间呈增长趋势,最优间距值为75 m,可避免人员拥堵;洞身紧急出口数量增加,可有效降低疏散控制时间,应结合土建工程,通过投资效果分析,确定推荐疏散方案;为确保疏散过程中的安全,利用轨下空间设置避难所作为待避空间,避难所参数为330 m×4.0 m×2.5 m(长×宽×高);隧道采用定点救援方式,疏散人员应按照就近原则选择避难所待避,并根据待避情况进行轨面救援。  相似文献   

15.
基于多智能体仿真平台NetLogo搭建仿真环境,利用海龟(Turtles)、瓦片(Patches)和观察员(Observer)3类智能体建立地铁车站站厅人员紧急疏散仿真模型。通过编程实现主体的探测、躲避障碍物、随机摆动、走向目的地等行走策略,规划人员的行走路径,推进仿真进程,研究站厅人员数量、出口条件、有站台输出人员对紧急疏散的影响。仿真结果表明:疏散时间随站厅人员数量线性递增且在超过某阈值后增长率突然变大;开放4个出口的疏散效率显著高于开放2个出口的情形且每种情形单个出口的疏散效率相似;2种情形下单位时间通过出口总人数的频次概率分布符合正态分布;疏散时间随出口宽度增加而迅速减小,宽度增至某值后减小速率趋于平缓;疏散时间随站台输出人员速率线性递增,人员生成速率超过某值后疏散时间迅速增大。本研究所得结论可为地铁车站站厅设计、人员紧急疏散和应急指挥提供可行性建议。  相似文献   

16.
市域快速轨道交通难免以隧道形式穿越大江大河,有必要探究市域快速轨道交通水底隧道防灾救援方法。依托温州市域铁路S2线瓯江北口隧道的工程实例,从工程应用、疏散效果、施工风险、结构受力、经济性、适用范围等方面,对比分析水底隧道受灾人员常见疏散方式,确定瓯江北口隧道受灾人员疏散方案;采用FDS软件模拟瓯江北口隧道不同火灾工况下,烟气、温度、可见度蔓延情况,以及安全疏散时间与距离火源位置关系。分析结果表明:隧道内发生火灾时,开启风机可使排烟效果得到明显提高,有利于人员安全疏散。  相似文献   

17.
在地铁站火灾中,对人员危害最大的不是火本身,而是因火灾而产生的有毒有害气体,因此研究高效的烟气控制模式就具有积极意义。本文采用CFD方法运用κ-ε双方程三维紊流模型分别对轨道中央列车车厢和站台层左侧两楼梯中间位置着火情况下烟气扩散情况进行模拟,比较屏蔽门对站台层火灾烟气扩散的影响。结果表明:安装屏蔽门并制定相对应的自动门开启数量后,至少能保证6 min的安全疏散时间;排烟风机对站台层的抽吸作用更加集中,风机的效率至少提高10%;站台层内温度也随着排烟效率的提高而显著降低。该研究为城市地铁防排烟提供了新思路和新方法,也为地铁应急疏散预案的制定和性能化消防设计提供理论依据。  相似文献   

18.
现行规范中规定"隧道与隧道紧密相连、隧道洞口间距不超过400 m的相邻隧道统称为隧道群",根据该规定,需设置较多数量的紧急救援站和配套工程,工程投资巨大。开创性地从火灾情况下烟气蔓延时温度、可视度方面着手,采用理论分析和实际调研的方法,研究铁路隧道群划分标准及其救援站设置原则。研究结果表明:(1)隧道群中隧道口间距大于250 m时发生火灾,相邻隧道基本互不影响;(2)当隧道洞口间距小于250 m时,可以将相邻的隧道理解为隧道群;(3)隧道洞口间设置了车站的相邻隧道可不受洞口间距控制是否作为隧道群设计,可在相邻的隧道设置射流风机,控制烟雾向隧道内扩散;(4)隧道群中的紧急救援站应尽可能布置在明线上,救援站长度应依据任意车厢着火,且列车均在明线停车考虑。  相似文献   

19.
研究目的:通过对石太铁路客运专线太行山、南梁长大隧道防灾救援的设计进行研究,探讨解决长大隧道防灾救援设计的关键技术问题.研究结论:隧道防灾救援应贯彻"以防为主,防消结合,方便自救,安全疏散"的原则;阻止发生火灾事故的列车进入隧道,旅客列车发生火灾后,不得在隧道内停车,确有必要,在隧道内设置"紧急救援站"进行停车疏散;当列车在隧道内发生火灾事故,凡能继续运行时,均应遵循"先将列车拉出洞外再进行列车解体及火灾事故处理"的基本原则;在设置运营通风时,应充分考虑到火灾时防、排烟要求,尽可能将隧道的防灾通风和运营通风结合起来;本着"简单、可靠、经济"的原则,隧道内设置必要的防灾救援系统设备.  相似文献   

20.
通过对石太铁路客运专线太行山、南梁长大隧道防灾救援的设计进行研究,探讨解决长大隧道防灾救援设计的关键技术问题。隧道防灾救援应贯彻"以防为主,防消结合,方便自救,安全疏散"的原则;阻止发生火灾事故的列车进入隧道,旅客列车发生火灾后,不得在隧道内停车,确有必要,在隧道内设置"紧急救援站"进行停车疏散;当列车在隧道内发生火灾事故,凡能继续运行时,均应遵循"先将列车拉出洞外,再进行列车解体及火灾事故处理"的基本原则;在设置运营通风时,应充分考虑到火灾时防、排烟要求,尽可能将隧道的防灾通风和运营通风结合起来;本着"简单、可靠、经济"的原则,隧道内设置必要的防灾救援系统设备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号