首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
深中通道伶仃洋大桥为主跨1 666m的全飘浮钢箱梁悬索桥,该桥东锚碇为重力式锚碇,采用8字形地下连续墙基础作为基坑开挖施工的支护结构。东锚碇基坑支护结构采用海中筑岛围堰的总体方案施工。东锚碇基坑支护结构施工前,在海中首先采用锁扣钢管桩及工字型钢板桩组合的围堰方案筑岛形成施工陆域,结合河床表层清淤、砂石垫层换填、插打塑料排水板等措施对筑岛陆域进行地基处理;待筑岛地基沉降稳定后,地下连续墙采用"旋挖引孔+铣槽"的复合成槽工艺施工;地下连续墙施工后,基坑采用岛式法分12区(平面)、14层(竖向)进行阶梯形开挖,同时采用同步降排水措施(设6个降水井、6个集水井)进行基坑开挖施工。  相似文献   

2.
南进江 《公路》2023,(5):145-150
张靖皋长江大桥北航道桥南锚碇采用直径为90 m的圆形地下连续墙锚碇基础,基坑开挖深度为21.3 m,基础底板下28 m深度范围内首次采用超高置换率的旋喷桩进行深层地基加固,以提升地基承载力、提高基底摩擦系数和降低承压水突涌风险。结合锚碇基础的建设特点,对深层地基加固质量控制、基坑渗水和突涌防治、返浆处理再利用以及锚体混凝土防渗控裂等施工重难点进行了分析,并提出了相应的施工控制措施,可为类似项目的实施提供借鉴。  相似文献   

3.
某大桥为双塔双跨悬索桥,主跨跨径达到1 688 m,边跨钢箱梁长548 m,其西锚碇采用厚度为1.5 m的地下连续墙作为锚碇基坑开挖的主要围护结构,地下连续墙深入中、微风化泥岩,基坑开挖深度达到22.2 m,采用水泥粉喷桩加固软土。基于该大桥锚碇基坑围护结构施工,探讨超深锚碇基坑围护结构施工关键技术,并给出部分施工建议。  相似文献   

4.
武汉鹦鹉洲长江大桥主桥为三塔四跨结合梁悬索桥,加劲梁跨径布置为(200+2×850+200)m。该桥南锚碇基础经多方案比选采用圆形嵌岩地下连续墙基础。地下连续墙外径68m、壁厚1.5 m,底板厚6 m,顶板厚14.5 m。导墙由2个L形钢筋混凝土墙组成,墙间距1.6 m;帽梁总宽4.0 m、高2.5 m;内衬厚1.5~2.5 m;在地下连续墙外围设置环形防渗帷幕。采用理正深基坑软件分析地下连续墙施工全过程的受力,进行结构配筋。采用软件FLAC3D建立基坑及周围土体三维模型,分析基坑开挖对长江大堤变形的影响,分析结果表明,正常施工时,周边建筑及长江大堤的安全可以得到保证。  相似文献   

5.
莫桑比克马普托大桥南锚碇基础采用外径50 m、壁厚1.2 m、深度56 m地下连续墙止水帷幕结构,基坑开挖深度36.3 m。在基坑开挖至27 m深时,出现1处基底突涌事故,导致基坑无法正常开挖施工。分析基坑突涌的形成原因及地下连续墙的封水效果,提出采取坑外降水方式将基坑外部承压水水头控制在开挖面以下的处治方案。通过抽水试验获取场地的水文地质参数,进行深基坑降水设计,并介绍减压井施工工艺及分阶段实施基坑降水情况。马普托大桥南锚碇深基坑降水处治取得了较好的施工效果,保证了工程的顺利完成,相关施工方法和设计方案可为类似工程提供参考。  相似文献   

6.
武汉阳逻长江大桥锚碇设计   总被引:1,自引:0,他引:1  
刘明虎  徐国平  刘化图 《公路》2004,(12):39-47
武汉阳逻长江大桥主桥为主跨1280m悬索桥,北锚碇采用放坡大开挖深埋扩大基础实腹式锚体重力式锚;南锚碇采用支护开挖深埋圆形扩大基础框架式锚体重力式锚,其基坑工程采用圆形地下连续墙加内衬的支护结构型式;在国内首次采用“无粘结可更换”预应力锚固系统。本文概述了锚碇的总体构造、基坑工程、锚体及锚固系统的结构设计及技术特点。  相似文献   

7.
以铁路连云港至镇江线五峰山长江大桥南锚碇基坑为研究对象,依次论述了基坑支护、基坑开挖两个施工阶段。基坑支护阶段主要是针对工程实际情况,对地下连续墙施工方案进行比选;基坑开挖阶段主要是结合信息化施工对整个开挖过程进行监控来满足各种施工技术要求。  相似文献   

8.
武汉鹦鹉洲长江大桥主桥为(200+2×850+200)m三塔悬索桥,该桥北锚碇为"带孔圆环+十字隔墙"重力式沉井基础,沉井外径66m,高43m;1号塔基础为44根φ2.0m钻孔灌注桩,2号塔基础为39根φ2.8m钻孔桩;3号塔基础为20根φ2.8m钻孔桩;南锚碇为"圆形嵌岩地下连续墙+内衬"结构形式,地下连续墙为钢筋混凝土结构,外径68m,壁厚1.5m。根据该桥基础特点,北锚碇沉井采用3轮接高、3次下沉施工;1号塔基础采用筑岛、双排防护桩施工方案;2号塔基础采用先钢围堰后平台的施工方案,钢围堰采用气囊法整体下河;3号塔基础采用先平台后围堰、单排钻孔防护桩施工方案;南锚碇采用液压铣槽机配合冲击钻施工地下连续墙的施工方案。  相似文献   

9.
武汉杨泗港长江大桥为主跨1 700m的单跨双层悬索桥,武昌侧锚碇为重力式锚碇(由地下连续墙、帽梁、内衬、底板及填芯混凝土组成),锚碇开挖直径98m、深39m,位于长江大堤南岸附近,地质条件较差。根据锚碇结构特点和地质条件,地下连续墙共划分68个槽段,Ⅰ、Ⅱ期槽段各34个,间隔分布,分别采用成槽机和铣槽机施工,接头形式为铣接头;基坑开挖前,采用地下连续墙墙底注浆、接缝处旋喷、抽水井等止排水措施,深基坑开挖采取逆作法施工,边开挖取土方边施工内衬,采用履带吊机将土方从基坑内吊出,帽梁和内衬分8段施工;锚碇底板、填芯大体积混凝土分层分块施工,采用冷却循环水、低水泥掺量的混凝土配合比等温控措施,保障了锚碇施工质量。  相似文献   

10.
宜昌伍家岗长江大桥主桥为主跨1 160 m的双铰钢箱梁悬索桥。该桥江南侧锚碇处基岩埋深较深,地下水位较高,采用直径为85 m的浅埋式扩大基础,持力层为中粗砂卵砾石,高15 m。基坑采用放坡开挖+咬合桩相结合的支护方案,咬合桩嵌入中风化岩层不小于3 m。基底以下设50 cm厚混凝土垫层,为降低基础不均匀沉降对桥梁结构的影响,基底采用钢管法注浆与原土体形成复合地基。结合项目建设条件对江南侧锚碇基坑开挖支护结构、地基承载力、地基沉降进行验算,结果均满足规范要求。所采用的锚碇基础及地基设计方案,较大程度降低了施工难度、缩短了施工工期、节省了工程造价,具有较好的经济效益和社会效益。  相似文献   

11.
棋盘洲长江公路大桥主桥为主跨1 038m的单跨钢箱梁悬索桥。该桥南锚碇采用内径61m、壁厚1.5m的圆形地下连续墙基础,地下连续墙嵌入中风化岩层至标高-50.5~-41m,总深度58~67.5m。在地下连续墙内侧设置1.0~2.5m厚的钢筋混凝土内衬,锚碇基础封底底板厚6m、顶板厚7~15m,锚碇后锚块区域与地下连续墙基础顶板连为一体。沿地下连续墙底部设置灌浆帷幕;布置6个孔径为600mm的降水管井进行坑内降水、排水。结合项目建设条件对该地下连续墙基础进行强度、稳定、地基承载力及墙底岩石劈裂验算,结果均满足规范要求。目前该地下连续墙基坑已开挖至设计标高并完成首层封底。  相似文献   

12.
基坑开挖是大型悬索桥梁锚碇基础施工的关键性工程之一,由于大都是超大、超深基坑,且一般位于江河堤附近,基坑开挖施工条件复杂、风险因素多、难度大,为保证锚碇基础施工质量和安全,合理的开挖工艺方法应用及有效的安全控制措施是关键。该文以工程、水文地质条件复杂的南京长江第四大桥南锚碇深基坑开挖控制措施的成功应用为背景,重点介绍在井筒式地下连续墙加内衬的支护结构形式下基坑开挖工艺方法和基坑降排水系统、墙体及基底防渗、设备人员及相应防护设施设置等方面的安全控制方法以及技术措施。  相似文献   

13.
《公路》2021,66(10):130-134
深中通道伶仃洋大桥东锚碇为海中八字形地连墙锚碇,地连墙直径长107.1m,宽65m,地连墙厚度1.5m,基坑开挖深度42m,总开挖方量约22万m~3。锚碇基础采用逆作法,每开挖4m施工3m内衬,内衬均为吊模施工,施工风险高,施工功效低。采用理正、Flac3d、Abaqus软件对基坑开挖全过程进行对比分析,得到施工过程中地连墙最大深层水平位移分别为20.15mm、12.03mm、10.0mm,均小于设计值(25mm),其三维模型计算结果与实际监控结果(10.3mm)较接近。同时,采用"出土门架+伸缩臂挖机"复合式出土工艺,日均出土量超过2 000m~3,确保了基坑开挖过程中的结构安全和施工功效。  相似文献   

14.
南京长江第四大桥南锚碇基础地下连续墙施工   总被引:1,自引:0,他引:1  
南京长江第四大桥主桥为双塔三跨悬索桥,其南锚碇基础支护结构为"∞"形地下连续墙,分Ⅰ期、Ⅱ期2种槽段,槽段采用铣接法连接。施工前先进行地质水文详勘与封排水设计、地基加固、修筑导墙及试验槽段施工。按隔墙、北外墙、Y形槽段、南外墙顺序施工地下连续墙,先施工Ⅰ期槽段,再施工Ⅱ期槽段。Ⅰ期槽段采用三铣成槽,Ⅱ期槽段采用一铣成槽,Y形槽段采用五铣成槽。在外墙预埋钢管进行墙底帷幕灌浆。基坑开挖前进行抽水试验,结果表明基坑日渗水量≤150 m3;基坑开挖过程中,围护结构变形和周边土体的沉降均小于预警值,说明地下连续墙施工质量良好。  相似文献   

15.
莫桑比克马普托(M aputo )大桥主桥为单跨680 m悬索桥,为确定马普托大桥锚碇基础方案,依据大桥桥位处的地质和水文情况,以及重力式锚碇的结构受力特点,针对锚碇基础基底持力层选择、施工工艺的适用性、技术可行性、经济性、合理性,分别对沉井基础和地下连续墙基础进行研究。研究结果表明:采用地下连续墙基础,施工期间可以避免由于地质情况变化带来的风险,如翻砂、突涌等;可以严格控制锚碇基础施工过程中对周围土体造成的沉降,最大限度地减少对周围铁路正常运营的影响。在确定地下连续墙基础形式后,针对施工过程中的突涌问题,对深地下连续墙和浅地下连续墙+灌浆帷幕+深井抽排水降低水头方案进行研究。研究结果表明:采用深地下连续墙基础,投入设备相对单一,施工工艺、工序简单,施工工效相对较高,施工工期较短,工期可控,应为马普托大桥合理的锚碇基础方案。  相似文献   

16.
《公路》2017,(1)
传统的重力式锚碇设计方法不考虑围护结构对基础承载力的贡献,随着施工技术与质量的进步,发挥地连墙围护结构承载力贡献的新型复合基础成为新的研究方向。以虎门二桥工程锚碇基础为背景采用有限元软件模拟了锚碇基础的建造过程,分析了缆力施加前后地下连续墙-锚碇的受力与位移变化,验证了地下连续墙-锚碇复合基础协同承载假定。研究表明:地下连续墙的抗剪强度、地下连续墙与周围土体的摩阻力对锚碇基础水平向抗滑移承载力均有贡献;采用地下连续墙作为基坑围护结构的大跨悬索桥锚碇基坑设计可考虑地下连续墙-锚碇基础的协同承载特性。  相似文献   

17.
《公路》2021,66(8):115-123
传统的重力式锚碇基础设计不考虑围护结构对基础承载力的贡献,而地下连续墙作为围护结构由于自身的结构特性,会在锚碇基础的承载时发挥一定作用。针对虎门二桥东锚碇基础,采用有限元方法分析了施加缆力前后锚碇基础的承载特性,并对地下连续墙在锚碇基础中荷载分担比和锚碇最大水平位移的影响因素进行了研究。结果表明,缆力的施加导致锚碇基础的水平剪力和弯矩均迅速增大并重新分布,地下连续墙始终承担了一定比例的荷载;施加缆力后,锚碇基础和地下连续墙的内力的峰值点或拐点均位于强风化软岩层与中风化软岩层分界面处,地下连续墙嵌入中风化软岩层的部分发挥了较大承载作用;地下连续墙的墙厚对地下连续墙在锚碇基础中的内力比影响最大;岩层弹性模量和地下连续墙的嵌岩深度对锚碇最大水平位移控制作用影响大。  相似文献   

18.
阳逻长江大桥南锚碇基坑工程封水、降水、排水系统设计   总被引:1,自引:0,他引:1  
徐国平  刘明虎  王连新 《公路》2004,(10):17-23
武汉阳逻长江大桥主桥,南锚碇基坑工程采用圆形地下连续墙加内衬的支护结构型式,其封水、降水、排水系统是基坑开挖施工成败的关键,也密切关系到长江主干堤的防洪安全。主要介绍南锚碇基坑封水、降水及排水系统的设计,以及防洪风险控制措施、施工预案等。  相似文献   

19.
张靖皋长江大桥北航道桥南锚碇采用直径90 m圆形地下连续墙锚碇基础方案,为了防止开挖期间基坑出现突涌,基坑底部采用了旋喷桩的方式形成水平封底隔水层。为了验证加固后水泥土的渗透系数能满足设计要求,深层地基加固大面积施工前开展了钻孔式振荡现场试验和变水头渗透室内试验,试验结果发现,现场振荡试验和变水头渗透试验得到的渗透系数结果差异较大。为进一步验证加固效果,补充开展了现场原状土的振荡试验和变水头渗透试验,补充试验结果表明:现场振荡试验结果比变水头渗透室内试验结果大很多,渗透系数结果受试验方法影响。同种试验方法得到的结果表明深层地基加固后水泥土的渗透系数比原状土明显降低,说明深层地基加固后可有效降低土的抗渗性能。最后分析了不同试验方法的差异原因以及本项目深层地基加固渗透系数取值的建议。  相似文献   

20.
圆形基坑支护结构在开挖期间具有良好的受力特性,在大型锚碇基础基坑支护中较为常用。根据xx大桥东锚碇基坑支护工程对新型桩-墙咬合圆形锚碇基坑支护施工工艺进行施工过程关键技术研究。结果表明:桩基施工作为Ⅰ期施工段,地下连续墙施工作为Ⅱ期施工段,Ⅰ期桩基施工应跳槽施工,Ⅱ期地连墙施工时应减少与Ⅰ期桩基混凝土龄期差;钢导墙代替常规导墙能有效缩短工期,避免常规导墙制作的繁琐工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号