首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The traffic collision avoidance system (TCAS) acts as a proverbially accepted last-resort means to resolve encounters effectively, while it also has been proven to potentially induce a collision in the hectic air traffic. Thus, new research considering the impact on safety is required to increase the airspace capacity based on a comprehensive analysis and accurate flight evaluation. In this paper, a causal encounter model is proposed to extend the TCAS logic considering the horizontal resolution manoeuvres, which could be used as the auxiliary supports when a potential collision is predicted in the vertical dimension. Based on the generated state space, the model developed in the graphical modelling and analysis software (GMAS), not only provides a better comprehension of the potential collision occurrences for risk assessment by representing the cause-effect relationship of each action, but also aids the pilots in the involved aircraft to make a cooperative and optimal option. Quantitative simulation results are conducted to validate the feasibility and effectiveness of the encounter model with horizontal resolution. The resulting collision scenarios are further investigated to illustrate that the risk rate of TCAS logic failures is expected to reduce by shortening the pilot's response delay, and the computational efficiency is competent in dealing with multi-threat scenarios.  相似文献   

2.
This paper presents analytical models that describe the safety of unstructured and layered en route airspace designs. Here, ‘unstructured airspace’ refers to airspace designs that offer operators complete freedom in path planning, whereas ‘layered airspace’ refers to airspace concepts that utilize heading-altitude rules to vertically separate cruising aircraft based on their travel directions. With a focus on the intrinsic safety provided by an airspace design, the models compute instantaneous conflict counts as a function of traffic demand and airspace design parameters, such as traffic separation requirements and the permitted heading range per flight level. While previous studies have focused primarily on conflicts between cruising aircraft, the models presented here also take into account conflicts involving climbing and descending traffic. Fast-time simulation experiments used to validate the modeling approach indicate that the models estimate instantaneous conflict counts with high accuracy for both airspace designs. The simulation results also show that climbing and descending traffic caused the majority of conflicts for layered airspaces with a narrow heading range per flight level, highlighting the importance of including all aircraft flight phases for a comprehensive safety analysis. Because such trends could be accurately predicted by the three-dimensional models derived here, these analytical models can be used as tools for airspace design applications as they provide a detailed understanding of the relationships between the parameters that influence the safety of unstructured and layered airspace designs.  相似文献   

3.
The Traffic Alert and Collision Avoidance System (TCAS) is a world-wide accepted last-resort means of reducing the probability and frequency of mid-air collisions between aircraft. Unfortunately, it is widely known that in congested airspace, the use of the TCAS may actually lead to induced collisions. Therefore, further research regarding TCAS logic is required. In this paper, an encounter model is formalised to identify all of the potential collision scenarios that can be induced by a resolution advisory that was generated previously by the TCAS without considering the downstream consequences in the surrounding traffic. The existing encounter models focus on checking and validating the potential collisions between trajectories of a specific scenario. In contrast, the innovative approach described in this paper concentrates on quantitative analysis of the different induced collision scenarios that could be reached for a given initial trajectory and a rough specification of the surrounding traffic. This approach provides valuable information at the operational level. Furthermore, the proposed encounter model can be used as a test-bed to evaluate future TCAS logic changes to mitigate potential induced collisions in hot spot volumes. In addition, the encounter model is described by means of the coloured Petri net (CPN) formalism. The resulting state space provides a deep understanding of the cause-and-effect relationship that each TCAS action proposed to avoid an actual collision with a potential new collision in the surrounding traffic. Quantitative simulation results are conducted to validate the proposed encounter model, and the resulting collision scenarios are summarised as valuable information for future Air Traffic Management (ATM) systems.  相似文献   

4.
In view of the SESAR and NextGEN objectives of increasing both the capacity and the safety of the Air Traffic Management (ATM) system, there is a need to conduct safety risk analysis of current or new operations, covering the joint effect of airborne and ground-based safety nets in ATM. The subject of the research presented in this paper is Airborne Collision Avoidance System (ACAS) which presents an airborne safety net within an ATM context, for current practices as well as advanced concepts. The aim of the research described in this paper is fivefold: (a) to verify existing ACAS models regarding their coverage of evaluation needs of ACAS operations; (b) to develop a stochastic and dynamical model of ACAS II including interactions with pilots and air traffic control; (c) to develop a systematic validation process that allows building model confidence; (d) to initially apply this validation process to the newly-developed ACAS model; and (e) to use the ACAS model to assess the potential collision risk reduction by ACAS II for a historical en-route mid-air collision event. The specific modelling formalism used for this is Stochastically and Dynamically Coloured Petri Nets (SDCPN). The developed SDCPN-based ACAS model contains the technical, human and procedural elements of ACAS operations and fully supports mathematical analysis as well as rare event Monte Carlo simulation of aircraft encounters. In order to build confidence into the developed model and to judge model credibility, a systematic multilevel validation process is defined and is successfully applied. The SDCPN-based ACAS model is demonstrated to work well for a historical en-route mid-air collision event and is very powerful in determining the most critical elements contributing to the non-zero collision risk of ACAS operation.  相似文献   

5.

As air transport demand keeps growing more quickly than system capacity, efficient and effective management of system capacity becomes essential to the operation of the future global air traffic system. Although research in the past two decades has made significant progress in relevant research fields, e.g. air traffic flow management and airport capacity modelling, research loopholes in air traffic management still exist and links between different research areas are required to enhance the system performance of air traffic management. Hence, the objective of this paper is to review systematically current research in the literature about the issue of air traffic management to prioritize productive research areas. Papers about air traffic management are discussed and categorized into two levels: system and airport. The system level of air transport research includes two main topics: air traffic flow management and airspace research. On the airport level, research topics are: airport capacity, airport facility utilization, aircraft operations in the airport terminal manoeuvring area as well as aircraft ground operations research. Potential research interests to focus on in the future are the integration between airspace capacity and airport capacity, the establishment of airport information systems to use airport capacity better, and the improvement in flight schedule planning to improve the reliability of schedule implementation.  相似文献   

6.
In this paper, typical flight paths, fuel burn and carbon dioxide (CO2) emissions are computed using a rich data set and two estimation approaches: (i) a clustering and landmark registration technique and (ii) a method based on the EUROCONTROL’s Base of Aircraft Data (BADA) performance model. Clustering is employed to extract flight characteristics and organize altitude profiles accordingly. Our flight path and CO2 emissions analysis focuses on the Climb-Cruise-Descent (CCD) cycle, since different operational conditions during the Landing and Take-off cycle may result in significant deviations in terms of fuel burn and CO2 emissions and different modeling assumptions and approaches should be adopted. The key features of the CCD cycle are the flight distance, the aircraft type and the flight direction. Path segmentation and landmark registration are employed for path representation and smoothening of discontinuities. The paths estimated by the above method are compared to those obtained by the point mass BADA model. Noticeable deviations in the resulting estimates of the operational characteristics are found. Higher deviations in prediction errors are found in the climb and descent duration and the rate of climb and descent. The typical altitude profiles obtained by the two methods are used to determine fuel burn and CO2 emissions. The difference in the resulting estimates are less stark; on a fleet-wide level the fuel burn of the relevant typical profiles differ by 7%. Emission maps of the U.S. airspace enabling the identification of critical emission spots including routes, airports, seasons and aircraft type are constructed.  相似文献   

7.
The integration of drones into civil airspace is one of the most challenging problems for the automation of the controlled airspace, and the optimization of the drone route is a key step for this process. In this paper, we optimize the route planning of a drone mission that consists of departing from an airport, flying over a set of mission way points and coming back to the initial airport. We assume that during the mission a set of piloted aircraft flies in the same airspace and thus the cost of the drone route depends on the air traffic and on the avoidance maneuvers used to prevent possible conflicts. Two air traffic management techniques, i.e., routing and holding, are modeled in order to maintain a minimum separation between the drone and the piloted aircraft. The considered problem, called the Time Dependent Traveling Salesman Planning Problem in Controlled Airspace (TDTSPPCA), relates to the drone route planning phase and aims to minimize the total operational cost. Two heuristic algorithms are proposed for the solution of the problem. A mathematical formulation based on a particular version of the Time Dependent Traveling Salesman Problem, which allows holdings at mission way points, and a Branch and Cut algorithm are proposed for solving the TDTSPPCA to optimality. An additional formulation, based on a Travelling Salesman Problem variant that uses specific penalties to model the holding times, is proposed and a Cutting Plane algorithm is designed. Finally, computational experiments on real-world air traffic data from Milano Linate Terminal Maneuvering Area are reported to evaluate the performance of the proposed formulations and of the heuristic algorithms.  相似文献   

8.
Conflict detection (CD) is one of the key functions used to ensure air transport safety and efficiency. In trajectory-based operation (TBO), aircraft are provided with more flexibility in en route trajectory planning and more responsibility for self-separation. The high flexibility in trajectory planning enables random changes in pilot intent, thus increasing the uncertainty in trajectory prediction and CD. This study proposes a novel probabilistic CD approach for TBO in which the uncertainty of pilot intent is taken into account by quantifying the aircraft reachable domain constrained by the flight plan. First, a probabilistic model for aircraft trajectory prediction is developed using the truncated Brownian bridge method. Based on this model, a novel conflict probability estimation method is developed. Finally, the performance of the proposed probabilistic CD approach is demonstrated through an illustrative air traffic scenario.  相似文献   

9.
The insufficiency of infrastructure capacity in an air transport system is usually blamed for poor punctuality performance when implementing flight schedules. However, investigations have revealed that ground operations of airlines have become the second major cause of flight delay at airports. A stochastic approach is used in this paper to model the operation of aircraft turnaround and the departure punctuality of a turnaround aircraft at an airport. The aircraft turnaround model is then used to investigate the punctuality problem of turnaround aircraft. Model results reveal that the departure punctuality of a turnaround aircraft is influenced by the length of scheduled turnaround time, the arrival punctuality of inbound aircraft as well as the operational efficiency of aircraft ground services. The aircraft turnaround model proposed is then employed to evaluate the endogenous schedule punctuality of two turnaround aircraft. Model results, when compared with observation data, show that the operational efficiency of aircraft ground services varies among turnarounds. Hence, it is recommended that the improvement of departure punctuality of turnaround aircraft may be achieved from two approaches: airline scheduling control and the management of operational efficiency of aircraft ground services.  相似文献   

10.
Two of the ways in which air travel affects climate are the emission of carbon dioxide and the creation of high-altitude contrails. One possible impact reduction strategy is to significantly reduce the formation of contrails. This could be achieved by limiting the cruise altitude of aircraft. If implemented, this could severely constrain air space capacity, especially in parts of Europe. In addition, carbon emissions would likely be higher due to less efficient aircraft operation at lower cruise altitudes. This paper describes an analysis of these trade-offs using an air space simulation model as applied to European airspace. The model simulates the flight paths and altitudes of each aircraft and is here used to calculate emissions of carbon dioxide and changes in the journey time. For a one-day Western European traffic sample, calculations suggest annual mean CO2 emissions would increase by only 4% if cruise altitudes were restricted to prevent contrail formation. The change in journey time depended on aircraft type and route, but average changes were less than 1 min. Our analysis demonstrates that altitude restrictions on commercial aircraft could be an effective means of reducing climate change impacts, though it will be necessary to mitigate the increased controller workload conflicts that this will generate.  相似文献   

11.
Objectives: The objective of the presented work is to present novel methods for big data exploration in the Air Traffic Control (ATC) domain. Data is formed by sets of airplane trajectories, or trails, which in turn records the positions of an aircraft in a given airspace at several time instants, and additional information such as flight height, speed, fuel consumption, and metadata (e.g. flight ID). Analyzing and understanding this time-dependent data poses several non-trivial challenges to information visualization.Materials and methods: To address this Big Data challenge, we present a set of novel methods to analyze aircraft trajectories with interactive image-based information visualization techniques.As a result, we address the scalability challenges in terms of data manipulation and open questions by presenting a set of related visual analysis methods that focus on decision-support in the ATC domain. All methods use image-based techniques, in order to outline the advantages of such techniques in our application context, and illustrated by means of use-cases from the ATC domain.Results: For each considered use-case, we outline the type of questions posed by domain experts, data involved in addressing these questions, and describe the specific image-based techniques we used to address these questions. Further, for each of the proposed techniques, we describe the visual representation and interaction mechanisms that have been used to address the above-mentioned goals. We illustrate these use-cases with real-life datasets from the ATC domain, and show how our techniques can help end-users in the ATC domain discover new insights, and solve problems, involving the presented datasets.  相似文献   

12.
This paper presents a dynamic network‐based approach for short‐term air traffic flow prediction in en route airspace. A dynamic network characterizing both the topological structure of airspace and the dynamics of air traffic flow is developed, based on which the continuity equation in fluid mechanics is adopted to describe the continuous behaviour of the en route traffic. Building on the network‐based continuity equation, the space division concept in cell transmission model is introduced to discretize the proposed model both in space and time. The model parameters are sequentially updated based on the statistical properties of the recent radar data and the new predicting results. The proposed method is applied to a real data set from Shanghai Area Control Center for the short‐term air traffic flow prediction both at flight path and en route sector level. The analysis of the case study shows that the developed method can characterize well the dynamics of the en route traffic flow, thereby providing satisfactory prediction results with appropriate uncertainty limits. The mean relative prediction errors are less than 0.10 and 0.14, and the absolute errors fall in the range of 0 to 1 and 0 to 3 in more than 95% time intervals respectively, for the flight path and en route sector level. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Today’s air traffic operations follow the paradigm of ‘flow follows structure’, which already limits the operational efficiency and punctuality of current air traffic movements. Therefore, we introduce the dynamic airspace sectorisation and consequently change this paradigm to the more appropriate approach of ‘structure follows flow’. The dynamic airspace sectorisation allows an efficient allocation of scarce resources considering operational, economic and ecological constraints in both nominal and variable air traffic conditions. Our approach clusters traffic patterns and uses evolutionary algorithms for optimisation of the airspace, focusing on high capacity utilisation through flexible use of airspace, appropriate distribution of task load for air traffic controllers and fast adaptation to changed operational constraints. We thereby offer a solution for handling non-convex airspace boundaries and provide a proof of concept using current operational airspace structures and enabling a flight-centric air traffic management. We are confident that our developed dynamic airspace sectorisation significantly contributes to the challenges of future airspace by providing appropriate structures for future 4D aircraft trajectories taking into account various operational aspects of air traffic such as temporally restricted areas, limited capacities, zones of convective weather or urban air mobility. Dynamic sectorisation is a key enabling technology in the achievement of the ambitious goals of Single European Sky and Flightpath 2050 through a reduction in coordination efforts, efficient resource allocation, reduced aircraft emissions, fewer detours, and minimisation of air traffic delays.  相似文献   

14.

Environmental charges are one of the economic instruments for controlling externalities. Their application to commercial flights has become a preferred method of encouraging the sustainable development of the air transport industry. Two kinds of externalities, aircraft noise and engine emissions, both generating profound impacts on human beings and on the environment, are considered here. The hedonic price method is applied to calculate the social cost of aircraft noise during the landing and take-off stages of the flight. The marginal impact of each flight with specific aircraft/engine combinations is derived for the allocation of aggregate noise social costs. In contrast, the dose - response method is applied to estimate the social cost of each engine exhaust pollutant during different flight modes. The combination of aircraft noise and engine emissions social costs is then evaluated on the basis of several environmental charge mechanism scenarios, using Amsterdam Airport Schiphol as a case study. It is shown that the current noise or engine emissions related charges at airports are lower than the actual social costs of their respective externalities. The implications of charge mechanism scenarios are subsequently discussed and evaluated in terms of their impacts on airline costs, airfares and passenger demand.  相似文献   

15.
The Air Traffic Management system is under a paradigm shift led by NextGen and SESAR. The new trajectory-based Concept of Operations is supported by performance-based trajectory predictors as major enablers. Currently, the performance of ground-based trajectory predictors is affected by diverse factors such as weather, lack of integration of operational information or aircraft performance uncertainty.Trajectory predictors could be enhanced by learning from historical data. Nowadays, data from the Air Traffic Management system may be exploited to understand to what extent Air Traffic Control actions impact on the vertical profile of flight trajectories.This paper analyses the impact of diverse operational factors on the vertical profile of flight trajectories. Firstly, Multilevel Linear Models are adopted to conduct a prior identification of these factors. Then, the information is exploited by trajectory predictors, where two types are used: point-mass trajectory predictors enhanced by learning the thrust law depending on those factors; and trajectory predictors based on Artificial Neural Networks.Air Traffic Control vertical operational procedures do not constitute a main factor impacting on the vertical profile of flight trajectories, once the top of descent is established. Additionally, airspace flows and the flight level at the trajectory top of descent are relevant features to be considered when learning from historical data, enhancing the overall performance of the trajectory predictors for the descent phase.  相似文献   

16.
This paper presents a model that systematically integrates, for the first time, the association between a region's aviation near-midair collision risk and its traffic levels, its type and amount of air traffic control, and the complexity of its airspace. The model incorporates the tight interrelatedness (and correlation) between traffic, airspace complexity, and air traffic controller staffing. An estimation of the model using cross-sectional data on 143 U.S. airports in 1985 indicates that the frequency of reported near-midair collisions (NMACs) is positively associated with regional traffic and airspace complexity, despite the fact that busier, more complex regions generally have more air traffic controllers. Also, in regions governed by “terminal radar service areas” (TRSAs), the reported near-midair collisions are positively associated with the presence of more satellite airports than would be expected on the basis of traffic alone. Finally, deviations from controller staffing levels that would be expected on the basis of traffic and airspace complexity alone are significantly associated with variations in reported NMACs in terminal control areas but not in terminal radar service areas.  相似文献   

17.
The flight schedule of an airline is the primary factor in finding the most effective and efficient deployment of the airline's resources. The flight schedule process aims at finding a set of routes with associated aircraft type, frequency of service and times of departures and arrivals in order to satisfy a specific objective such as profit maximization. In this paper, we develop a two‐phase heuristic model for airline frequency planning and aircraft routing for small size airlines. The first phase develops a frequency plan using an economic equilibrium model between passenger demand for flying a particular route and aircraft operating characteristics. The second phase uses a time‐of‐day model to develop an assignment algorithm for aircraft routing.  相似文献   

18.
为了遏制境外新冠肺炎疫情输入风险的高发态势,中国民航总局出台了调控航班的"五个一"措施。对于中国为防疫而采取的措施,美欧表示了不满,认为我国单边违反了航空运输协定。本文阐明采取相关防疫措施的国际立法依据是《国际卫生条例》第2条总目标及第43条有关额外措施的规定,从措施的实施效果与当前新冠肺炎疫情传播的严峻程度看,调控航班的措施是符合条例中的"保护性原则"、"比例原则"和"科学原则"的。  相似文献   

19.
20.
This study presents a set of models that calculate carbon emissions in individual phases of flight during air cargo transportation, investigates resultant carbon footprints by aircraft type and flight route, and estimates increases in transportation costs for airlines due to carbon taxes imposed by the EU ETS. The estimated results provide useful references for airlines in aircraft assignment on different routes and in aircraft selection for new purchases. Validation of the model is conducted by simulating the potential impact of the implementation of the EU ETS on costs of air cargo transportation for six routes and six types of aircraft. Results show that the impact may be subject to various factors including unit carbon emissions per aircraft, aviation emission allowances per airline, and carbon trading prices; and that increases in costs of air cargo transportation range from 0% to 5.27% per aircraft per route. Therefore, the implementation of the EU ETS may encourage airlines to cut down their operating costs by reducing their carbon emissions, thereby ameliorating greenhouse gas pollution caused by air cargo transportation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号