首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
为研究选择合适的中低速磁浮交通简支轨道梁结构型式,基于中低速磁浮交通的特点,分析国内外磁浮线路的桥梁型式及跨度;以长沙中低速磁浮为工程背景,在满足使用功能、技术经济性、美观及养护等要求下,对比分析了各梁高、梁型条件下轨道梁的差异,研究选取合理桥梁跨度、结构型式,并对梁部的构造设计和接口设计进行了初步的论述。得出以下结论:(1)对比国内外磁浮线路的桥梁型式及跨度,综合已建工程实例和长沙磁浮工程可行性研究及初步设计阶段比较结果,高架区间拟采用梁高2. 1 m、跨度25 m简支梁为主;(2)综合考虑技术经济性、施工便捷性、线路后期维护、景观效果等,轨道梁采用并置单线箱梁方案;(3)针对轨道梁进行横联设计及曲线轨道设计,同时兼顾桥上设备、电缆等的布置及疏散、检修通道的空间设置,完成其接口设计。  相似文献   

2.
研究目的:因桥上无缝线路梁轨相互作用较为复杂,桥梁和轨道结构的受力与变形特性成为国内外学者的热点研究问题。为研究温度荷载、列车荷载和制动荷载作用下轨道结构的受力与变形规律及影响因素,根据嵌入式轨道的特点,本文通过建立嵌入式轨道桥上无缝线路有限元模型,计算伸缩力、挠曲力和制动力三种工况下轨道结构的受力与变形情况,并分析梁体温差、高分子材料纵向阻力和墩台纵向刚度对伸缩力的影响。研究结论:(1)嵌入式轨道的线路纵向阻力和垂向刚度均为线性变化,且轨板相对位移限值为6.2 mm;(2)轨道结构的受力和变形均随着梁体温差的增加而线性增加,允许梁体温差为38℃;随着线路纵向阻力的增加,钢轨纵向位移和伸缩力逐渐增大,而轨板相对位移则逐渐减小;桥梁墩台纵向刚度对轨道结构的受力和变形影响较小;(3)在挠曲力和制动力工况下,轨板相对位移和钢轨附加力均较小,故在设计时应重点关注伸缩力工况;(4)当梁体温差和轨温变化幅度为30℃时,钢轨强度和轨板相对位移均满足要求,因此在32 m简支梁上铺设有轨电车嵌入式轨道无缝线路是可行的;(5)本研究成果对桥上有轨电车嵌入式轨道设计具有参考价值。  相似文献   

3.
文章首先介绍中低速磁浮线路轨道梁的型式及列车运行的特点,其次基于限界要求和接触轨的安装允许误差,分析曲线地段轨道梁拟合长度的影响因素.通过理论推导,得出中低速磁浮曲线地段轨道梁的最大拟合长度计算公式,然后计算不同曲线半径轨道梁的最大拟合长度值.结果表明,目前采用的曲线地段轨道梁拟合长度1 m偏于保守,由此给出轨道梁优化...  相似文献   

4.
中低速磁悬浮列车高架车站结构设计   总被引:1,自引:1,他引:0  
通过对昆明中低速磁浮列车新建工程及唐山中低速磁浮试验线高架车站结构设计的实践,对中低速磁浮高架车站中的荷载取值、荷载组合、结构内力计算、轨道梁设计等问题进行研究,阐述磁浮"桥建合一"型车站结构设计的基本思路和方法。探讨车站设计中的一些难点,如结构计算中模型的选择、连续轨道梁刚度和配筋以及供磁浮列车检修用支墩的设计等,并提出建议,以供开展磁浮列车高架车站设计参考。  相似文献   

5.
研究目的:桥上CRTSⅡ型板式无砟轨道无缝线路梁-板-轨及层间相互作用机理比较复杂,为研究各轨道及桥梁结构的制动力传递规律及其影响因素,基于有限元法和梁-板-轨相互作用原理,建立多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路空间耦合模型,计算列车制动荷载作用下各轨道及桥梁结构的纵向力与位移,并分析多种因素对制动力传递规律的影响。研究结论:(1)制动荷载作用下的轨道结构纵向力由拉力逐渐变为压力,纵向位移呈现先增后减的趋势;(2)需根据不同的检算部件选取最不利的荷载工况;(3)在检算时需考虑轨道板/底座板刚度的折减,且必须保证其施工质量;(4)采用小阻力扣件时轨板快速相对位移的剧增易带动轨下胶垫滑出;(5)固结机构、桥墩/台采用较大纵向刚度,并保持滑动层的良好滑动性能有利于各轨道及桥梁结构的受力与变形;(6)该研究成果可为桥上CRTSⅡ型板式无砟轨道无缝线路的设计、施工及运营维护提供参考。  相似文献   

6.
依托某中低速磁浮试验线工程,以进一步提高中低速磁浮桥梁的经济性、施工便捷性及中低速磁浮交通与跨座式单轨等新型轨道交通的竞争优势为目的,重点阐述中低速磁浮轨道梁结构体系、墩梁型、经济跨度及施工方法的比选,并结合磁浮车辆独特的走行方式对桥面布置、桥上设备安装及管线敷设方式进行优化。根据中低速磁浮线路运营安全性及行驶舒适性的要求,在既有磁浮桥梁技术标准体系研究成果的基础上,提出推荐的轨道梁结构形式及施工方法。  相似文献   

7.
颜乐  魏贤奎  王宇  王平 《铁道建筑》2014,(5):126-130
根据梁轨相互作用原理并结合拱桥上无缝线路的结构特点,建立了上承、中承、下承式拱桥上无缝线路的线桥墩一体化计算模型,采用ANSYS和FORTRAN语言相结合的方式,编制了拱桥上无缝线路通用计算软件ABCWR。以一普通桥梁为例进行了验证,计算结果符合桥上无缝线路基本原理。ABCWR可对桥上无缝线路的伸缩力、挠曲力、制动力及梁轨相对位移、墩台纵向力及位移进行计算分析,可用于铁路上各种拱桥和普通桥上无缝线路的设计和计算。  相似文献   

8.
温度梯度对高墩桥上无缝线路的影响分析   总被引:3,自引:0,他引:3  
为研究温度对高墩大跨桥上无缝线路的影响,基于梁轨相互作用原理,利用有限元方法,建立线—桥—墩一体化模型,计算高墩大跨桥梁桥墩受到纵向和横向温度梯度荷载时钢轨的纵向力和梁轨相对位移。计算结果表明:桥墩受到纵向温度梯度荷载时钢轨受到的最大压力为523.09 kN,与最大附加伸缩力值584.95 kN接近,纵向温度荷载对桥上无缝线路的影响近似等同于附加伸缩力,在设计桥上无缝线路时必须予以考虑;横向温度梯度荷载对桥梁本身的影响较小,在设计中可以通过安全系数予以控制,在设计中可忽略。分析温度荷载对高墩桥上无缝线路的影响,对于桥梁的安全设计和保证桥上无缝线路的稳定状态均具有一定的指导意义。  相似文献   

9.
结合唐山中低速磁浮试验线上更换钢铝复合接触轨工程的实践,对工字形接触轨绝缘侧向安装、轨道梁和车辆限界和接触轨在道岔梁的过渡方案进行分析研究;介绍了工程实施重点、实施步骤、接触轨系统新产品(钢铝复合接触轨、道岔梁处接触轨过渡关节弯头和膨胀接头)的技术功能以及施工的技术配合。最终取得了圆满成功,为我国中低速磁悬浮线路建设积累了经验。  相似文献   

10.
桥上无砟轨道受力比较复杂,桥上无砟轨道无缝线路的稳定性直接影响高速列车的行车平稳与安全。基于有限元法和梁轨相互作用理论,建立了6×32 m混凝土简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,研究温度荷载作用下钢轨、轨道板及底座板的受力变形特性,并对相关影响参数进行分析。结果表明:在温度荷载作用下,钢轨伸缩力的峰值出现在桥梁墩台及跨中,钢轨的纵向位移呈现先增后减的趋势,在中间两跨达到最大值,钢轨和轨道板的纵向伸缩趋势基本一致,表明扣件起到了很好的约束作用;桥上采用小阻力扣件可改善桥上无缝线路梁轨相互作用,但要充分考虑轨板相对位移不能过大,保证钢轨在桥台处的爬行能够得到有效控制;从减小桥上轨道结构伸缩力及纵向位移考虑,桥梁墩台固定端纵向刚度不宜过大。  相似文献   

11.
大跨度多跨连续梁桥上无缝线路结构设计,不仅在于合理的设置钢轨伸缩调节器及轨道结构,而且固定支座的合理布置同样对减小梁、轨之间的相互作用,并防止线路爬行,保证轨道结构的安全也起着至关重要的作用,本文以某大跨度多跨连续梁桥为例,选定合理的轨道结构型式及桥梁支座布置型式,计算分析伸缩调节器的设置及桥梁固定支座布置对桥上无缝线路纵向力的影响.  相似文献   

12.
高墩水平温差对连续刚构桥上无缝线路的影响   总被引:1,自引:1,他引:0  
为研究高墩水平温差对桥上无缝线路的影响,选取某高墩大跨连续刚构桥工程实例,基于梁轨相互作用原理,建立线桥墩一体化有限元模型,分析在水平纵向和横向温差作用下高墩大跨桥上无缝线路受力变形情况。结果表明:高墩纵向温差对连续刚构桥上无缝线路纵向受力影响较大,随着桥墩纵向温差的增大,桥上无缝线路受力逐渐增大;桥墩横向温差影响桥上无缝线路平顺性,当桥墩横向温差超过一定的限值时,连续刚构桥上无缝线路会出现长波不平顺超限;总结以上分析结果,建议在连续刚构桥上无缝线路设计检算中考虑高墩在水平温差作用下对桥上无缝线路的影响。  相似文献   

13.
中低速磁浮轨道系统特点及工程适应性分析   总被引:3,自引:0,他引:3  
研究目的:本文以中低速磁浮轨道系统特点为研究对象,研究当前国内外三种典型的中低速磁浮轨道结构形式,介绍各重要组成部件的主要技术特征及设计应注意的问题,并对其工程适应性进行简要分析,从而加深对中低速磁浮轨道系统特点及工作特性的理解和认识,为完善中低速磁浮轨道结构设计提供参考。研究结论:(1)中低速磁浮轨道系统一般包括轨道设备及其支承结构,并组成断面为"T"形的结构形式,合理的轨道结构形式设计的关键在于良好的处理轨道与轨道梁的相互关系;主动控制的磁轨关系对于轨道系统的设计有决定性影响;磁浮系统稳定性要求轨道设计满足大质量、大阻尼和小变形要求;小间隙悬浮对轨道系统提出了严格的高精度要求;(2)针对实际工程应用:HSST系统轨道有相对较多的实际应用经验,但无法实现F轨的灵活调节;无轨枕直连式轨道经济性较差;整体式道床轨道通过设置道床调整层和上承式扣件系统实现轨道结构的高度整体性和良好的几何形位保持性,符合中低速磁浮交通系统技术要求;(3)本研究成果可为中低速磁浮交通运营线轨道设计提供参考。  相似文献   

14.
随着桥梁跨度、联长的不断增加,复杂的梁轨相互作用给桥上无缝线路设计带来了巨大挑战。本文在总结桥上无缝线路计算理论和求解模型的基础上,以某长联大跨桥上无缝线路为例,对其力学特性和结构设计进行了系统研究。研究表明:(1)长联大跨桥上无缝线路纵向附加力较大,钢轨强度往往难以满足规范要求;(2)梁端设置伸缩调节器,可有效减小梁轨相互作用,放散钢轨纵向力;(3)梁端设置抬枕装置可有效缓解梁缝增大导致的轨道刚度不均匀问题,需与伸缩调节器配套使用;(4)长联大跨桥上轨道设置健康监测系统十分必要。  相似文献   

15.
为探究活动支座摩阻对大跨连续梁桥上无缝线路梁-轨相互作用的影响,基于梁-轨相互作用及有限元理论,将活动支座摩阻等效为非线性弹簧,建立可考虑活动支座摩阻的连续梁桥上无缝线路空间耦合模型,对考虑活动支座摩阻前、后的钢轨及桥墩结构受力变形展开对比分析。结果表明,活动支座摩阻增强了连续梁与无缝线路的纵向约束,当活动支座摩阻率从0增大至0.06时,温度作用下,连续梁桥上钢轨纵向力及梁轨相对位移峰值分别减小了24.32%和29.89%,连续梁桥固定墩纵向力增加了2.44倍;制动荷载作用下,钢轨制动力、梁轨相对位移及连续梁桥固定墩纵向力分别减小了53.51%、56.94%和41.63%;断轨工况下,部分断轨力通过活动支座摩阻传递给非固定墩,连续梁桥固定墩纵向力减小了60.64%,钢轨断缝值减小了3.3%;活动支座摩阻对大跨连续梁桥上无缝线路及桥墩纵向力影响较大,建议在大跨连续梁桥上无缝线路及桥墩设计中考虑活动支座摩阻的影响。  相似文献   

16.
有砟轨道基础桥上无缝线路计算软件开发及应用   总被引:1,自引:1,他引:0  
运用梁轨相互作用基本原理,在考虑钢轨、桥梁和墩台相互作用的基础上,建立了桥上无缝线路的线桥墩空间一体化计算模型,用于对桥上无缝线路伸缩附加力、挠曲力、制动附加力、断轨力、梁轨相对位移及墩台纵向受力和变形的计算分析.为计算方便,以有限元软件ANSYS为计算平台,利用ANSYS参数化设计语言进行二次开发,编制了有砟轨道基础桥上无缝线路通用计算软件,可用于各种桥上无缝线路的设计计算.  相似文献   

17.
针对我国高速铁路桥上CRTSⅡ型板式无砟轨道梁-板-轨相互作用问题,采用有限元法分别建立双线多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路精细化空间耦合模型,考虑桥梁及轨道结构的细部尺寸与力学属性,计算列车荷载作用下各轨道及桥梁结构的挠曲力与位移,分析扣件纵向阻力、滑动层摩擦因数等参数对桥上无缝线路挠曲受力与变形的影响规律。研究结果表明:列车荷载作用下大跨连续梁桥上轨道结构的受力与变形要明显大于多跨简支梁桥,单线加载时有载侧和无载侧之间相差不大,且近为双线加载时的1/2;需要根据不同的检算部件选取最不利的列车荷载作用长度;采用小阻力扣件改善钢轨受力与变形时,固定支座桥台和连续梁活动支座桥墩处的轨板相对位移应加强观测;滑动层摩擦因数、固结机构纵向刚度及固定支座墩/台顶纵向刚度均需控制在合理范围内。  相似文献   

18.
依托北京市中低速磁浮交通示范线,提出悬臂式挡土墙、U形槽、U形槽组合顶板3种适用于中低速磁浮交通的新型路基结构.该路基结构上承小型分节式承轨梁,下部采用旋喷桩或素混凝土桩进行地基处理,共同构成中低速磁浮交通新型路基及低置型承轨梁台结构系统.通过在代表性断面预埋单点沉降计、沉降观测标、土压力计,开展现场静力学试验.此外,...  相似文献   

19.
研究目的:温度荷载下梁轨耦合作用规律是桥上铺设CRTSⅡ型板式无砟轨道的基础,本文针对简支梁和连续梁,建立多钢轨、整桥系统的计算模型,对其梁轨耦合作用规律及其影响因素进行较为全面、细致的分析,以期为桥上纵连板式无砟轨道无缝线路的设计、施工及后期养护维修提供参考。研究结论:(1)纵连板的钢轨伸缩力与梁跨布置没有明显的映射关系,近似呈对称分布,这主要是由轨道板的位移分布特点所决定的;(2)底座板是梁轨系统中的关键部件,其伸缩影响着系统其他部件的受力与变形,端刺为底座板的锚固装置,其刚度直接决定着底座板的伸缩位移大小;(3)受梁板相对位移的影响,滑动层、"两布"隔离层、端刺产生的纵向力均会引起底座板纵向力的变化,变化幅度近似为其摩阻力或纵向力;(4)降温工况下,钢轨、轨道板、底座板三层纵连结构受桥梁伸缩的影响不大,但在剪力齿槽处波动较大;(5)滑动层摩擦系数是轨道结构中极其重要而又难以监控的参数;增大CA砂浆粘结力对轨道结构受力有利,建议严控施工质量;(6)该研究结论对纵连板式无砟轨道设计优化理论和工程实践具有一定的指导意义。  相似文献   

20.
桥墩纵向水平线刚度对桥上无缝线路设计的影响   总被引:4,自引:0,他引:4  
桥墩纵向水平线刚度是桥梁和无缝线路设计的关键技术参数,桥上无缝线路钢轨与墩台纵向力的分配以及梁、轨位移的大小很大程度上取决于桥墩纵向水平线刚度。结合工程实际,以客运专线常见的60 m 100 m 60m连续梁为例,分析桥墩纵向线刚度对钢轨、墩台纵向力及梁、轨位移的影响规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号