首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
车轴设计参数对轴毂配合接触压力影响的研究   总被引:2,自引:0,他引:2  
在铁道车辆中,轴毂间配合的接触压力,不仅是研究微动损伤的重要参数,而且也是保证轮轴间扭矩的传递、抵抗轮轴相对运动的重要因素.本文以空心车轴和车轮为研究对象,利用有限元软件ABAQUS,建立轮轴有限元模型,考虑轮轴间过盈配合,在高应力梯度区细化网格,详细研究空心车轴轮座区的设计参数对接触压力的影响.这些参数包括过盈量、过渡圆弧半径、轮毂悬伸量、轮座与轴身直径比和空心度,以及使用条件下的摩擦系数、轮轴温度和轮对旋转速度.结果表明,过盈量对轴毂配合接触压力的影响较大,应慎重选择;过渡圆弧半径和轮毂悬伸量显著影响轴毂接触边缘的接触压力;其他设计参数对轴毂间接触应力的影响较小.  相似文献   

2.
为研究机车车辆轮轴接触面的应力值与过盈量之间的关系特征,应用基于弹性力学的传统接触应力计算式和有限元的计算方法进行了分析。根据采集的11个车轴截面的应力值与对应的过盈值绘制出曲线图,并采用数值分析方法计算线性相关系数r。分析结果表明,车轴的轮轴配合面及其附近区域的计算应力值与过盈量之间都存在良好的线性相关性,且轮轴配合区域的应力值受过盈值上升的影响较大,车轴其他区域应力值所受的影响较小。  相似文献   

3.
基于有限元方法对JD160型异步牵引电机转子、齿轮及轴承等关键核心结构,进行不同载荷工况下的强度分析,并结合该电机的工艺装配过程,研究装配参数过盈量对电机关键部件应力集中的影响。数值计算结果表明,电机在不同载荷工况的弯矩和扭矩以及单边磁拉力的交互作用下,齿轮贯穿孔、油槽边缘、倒锥前缘以及转轴肩等部位出现较高的应力集中,同时随着齿轮和转轴装配过盈量的增大,关键位置的应力基本成线性增大,不同位置的应力变化率不同。  相似文献   

4.
梁红琴  杨浪  赵永翔 《铁道车辆》2013,(8):1-3,24,55
采用ANSYS软件建立了过盈连接的轮对压装有限元模型,仿真分析了轮对的压装过程,研究了过盈量、摩擦因数与压入速度等因素对轮对压装应力分布的影响规律。结果显示,过盈量是影响轮对压装力的主要因素,过盈量增大,压装力、轮轴配合应力也会增大,但不影响应力分布趋势;摩擦因数与压入速度对轮对压装影响较小。  相似文献   

5.
为了探究装配过盈量,摩擦因数,形状公差,轮轴突悬组装以及注油槽对压装曲线及轮轴接触部位应力的影响规律,以某型动车组轮对为研究对象,用ABAQUS软件建立轴对称有限元模型,对轮对压装过程进行仿真。研究结果表明:配合过盈量以及摩擦因数是确保配合质量达标的关键;轮轴突悬组装、车轮注油槽对接触部位的应力分布有显著影响;选择恰当的轮轴形状误差组合有利于压装的合格。  相似文献   

6.
阐述了B1型轮对的压装情况及故障统计,就故障问题在轮对压装曲线、轮轴装配应力以及压装配合面状态三方面进行了分析,并采取了调整车轮内孔直径的正向锥度、控制过盈量比以及保证设备加工精度等有效的应对措施。实践表明,该措施较好解决了B1型轮对压装的故障问题,为地铁车辆轮对的检修维护提供了借鉴。  相似文献   

7.
铁道车辆的车轮和车轴(即轮轴)在运行中,不能因为车轮上受到的横向作用力等而发生相对位移,而应该必须起到传递驱动力与制动力的作用。基于这样的原因,在轮轴上车轴的轮座外径与车轮轮毂孔内径之间设置了一定的过盈量,从而实现过盈配合,使其具有夹紧力。因此,在将车轮压装到车  相似文献   

8.
介绍了轴套式花键的功能、结构及材料选择,并对花键的渐开线齿进行了强度的理论计算。过盈量的大小不仅决定了轴套式花键能否可靠传递轮轴间的扭矩,而且决定了轴套与车轴过盈配合面间的应力大小,对过盈量进行了理论和有限元计算,同时还对轴套式花键进行了疲劳强度校核。计算和分析表明:选择轴套式花键来传递轮轴间的扭矩不仅大大降低了对车轴材料的性能要求,而且是切实可行的。  相似文献   

9.
机车轮对轮箍上加装扣环在实际应用中能够有效地防止内燃机车轮对轮箍弛缓的发生.通过对轮对轮箍上加装扣环的过盈配合进行有限元计算,确定加装扣环不会对轮对的装配应力产生影响.  相似文献   

10.
纵梁(肋)高度对正交异性板钢桥面系受力影响分析   总被引:1,自引:1,他引:0  
正交异性板各个构件的选用关系着钢桥面系的安全性及经济性,通过有限元分析软件,建立桥面系板单元模型,对正交异性板多横梁体系纵梁、纵肋高度变化时桥面系各部分受力分析,总结纵梁(肋)高度变化对桥面板、横梁以及横梁与纵梁(肋)相交处挖孔部位受力的影响趋势,得出结论:增加纵梁高度,纵梁自身正应力逐渐增大,U肋正应力逐渐减小;横梁U肋挖孔处主拉应力增大,横肋相应处主拉应力减小,但减小或增大的幅度较小。改变T形纵梁高度,对横梁整体受力及桥面板影响甚小,可忽略不计,T形纵梁的合理取值范围为横梁高度的0.35~0.4倍;U肋高度过大或者过小,桥面板应力的均匀性均不好,且主拉应力均较大。增大U肋高度,纵梁正应力逐渐减小,U肋自身应力并未成线性变化趋势,而是呈"锯齿"形变化趋势。改变U肋高度对桥面板应力影响均较小,可忽略不计,U肋的合理高度取值范围为240~280 mm。  相似文献   

11.
依据动力车轴设计方法最新标准TB/T 2395—2008对某30 t机车车轴进行校核分析,给出了具体的计算步骤,然后利用有限元法对其进行验证,经对比分析得出该车轴疲劳强度满足设计要求,同时分析了应力值出现差异的原因。通过设置不同过盈量,计算得出过盈量对轮轴配合处应力值有很大影响。  相似文献   

12.
以高速动车组轴箱弹簧为研究对象,利用软件Hyper Mesh建立弹簧有限元模型。考虑弹簧支撑圈与工作圈在大挠度情况发生接触,对接触区进行网格细化。将该模型导入软件ABAQUS中进行有限元计算分析,通过静应力标定试验进行验证。结果表明,有限元分析结果和静应力标定试验结果比较一致,相对误差在允许范围内,验证了有限元计算模型的正确性。采用有限元分析与弹簧最大应力计算公式相结合的方法,推出轴箱弹簧刚度特性曲线,并通过曲线的线性拟合,得出其刚度值为352.1 N/mm。分析轴箱弹簧发生疲劳断裂位置,获得该位置当量应力与接触应力随弹簧挠度变化的应力曲线,得出最大接触应力为164.6 MPa,验证了接触应力对端部接触区当量应力具有较大影响。因此在制造过程中,可以调节支撑圈与第1工作圈间隙来减少接触应力的影响。  相似文献   

13.
轮轨接触应力对轮轨磨耗和滚动接触疲劳影响较大,因此精确计算轮轨接触点与接触应力非常重要。本文基于重载铁路轮轨标准型面,利用改进的轮对轴向切片投影法,准确找到轮轨多点接触。引入弹性压缩量,找到接触斑,利用一种精确计算轮轨接触应力的方法求得轮轨法向接触应力,并考虑轮轨摇头角和侧滚角的影响。结果表明:该方法在寻找轮轨多点接触与计算轮轨接触应力时结果较为准确、直接和全面;轮轨接触斑随着轮对横移和摇头角变化,呈现非椭圆形状;一侧车轮轮缘和轨距角处接触,曲率半径较小,轮轨法向接触应力最大值可达3 400MPa,而另一侧轮轨的法向接触应力均小于2 000MPa。在轮对横移量为0~3mm时,摇头角的增加使右轮轨接触斑面积减小,相应的接触应力增大;在轮对横移量为4~9mm时,摇头角的增加使右轮轨接触斑面积增大,相应的接触应力减小;摇头角的增加对左轮轨接触状态有利,但影响不明显。  相似文献   

14.
列车蛇形运动状态下轮轨接触特性分析   总被引:3,自引:1,他引:2  
为了分析列车在蛇形运动状态下轮轨接触区域的形状、面积、轮轨接触应力和Mises应力的特性,根据有限元理论并结合ANSYS有限元软件,建立包含一个轮对的轮轨系统有限元模型,计算分析轮轨接触特性与轴重和轮对摇头角之间的关系,计算结果表明:轮对摇头角对接触特性的影响不是很明显,而轴重和轮对中心横移量对轮轨接触斑的面积和形状有着显著的影响;接触斑的形状不同于用Hertz理论得到的椭圆形接触斑。  相似文献   

15.
某新型高速变轨距动车组变轨机构中车轮、滑动套和车轴存在多层圆筒配合,为深入了解配合量对滑动套接触压力以及结构应力的影响,分别采用弹性力学和有限元分析的方法对其进行求解,并分析了不同配合量对接触压力和结构应力的影响。结果表明:除接触边缘区域,车轮-滑动套接触压力与配合面过盈量成正线性关系;滑动套-车轴间隙量对滑动套内孔面结构应力影响显著,其实际间隙值由于车轮-滑动套过盈配合的压缩作用而小于设计值,所以设计间隙量时建议考虑车轮-滑动套过盈配合的压缩作用。  相似文献   

16.
为了研究跨座式PC轨道梁支座在正常运营荷载作用下的力学效应,以及销轴与摆孔之间的摩擦接触应力和滚滑运动状态,从界面力学的赫兹接触原理角度出发,采用有限元数值模拟的方法,借助ABAQUS有限元分析软件,建立跨座式PC轨道梁铸钢支座独立模型。分析直线轨道梁支座的应力应变情况,并对比不同跨度及半径的曲线轨道梁支座的应力状态;讨论不同类型荷载作用对支座应力集中的影响程度,并提出在弯道处做超高设置减小横向扭矩,从而降低曲线梁支座应力的有效措施。结果表明,在正常运营荷载作用下,直线梁支座的接触应力应变满足要求;曲线梁支座应力超限,且半径越小应力越大;同一荷载作用下,活动支座滚轴和承压板接触应力高于上下摆的接触应力,且横向扭矩对支座应力的影响最显著。  相似文献   

17.
为了研究跨座式单轨固定铸钢支座铰轴与摆孔之间的接触应力,应用Hertz接触理论,分析影响铸钢支座接触应力的主要因素。采用有限元数值模拟的方法,借助ABAQUS有限元分析软件,建立固定支座的三维有限元模型,通过计算得到固定支座的接触应力。对支座进行静力荷载试验,对比试验结果与有限元计算结果,验证有限元分析结果的可靠性。最后借助有限元分析手段,计算铰轴直径变化对接触应力的影响。结果表明,固定支座在设计静力荷载作用下的接触应力满足要求,并且铰轴材料具有较大的强度富余;铰轴直径的尺寸会影响支座接触应力的大小,且存在最优铰轴直径使支座接触应力最小,可以为铸钢支座结构的设计与优化提供指导。  相似文献   

18.
大功率机车轮轨接触应力计算分析   总被引:1,自引:0,他引:1  
轮轨关系是大功率机车车轮国产化的重要研究内容。轮轨接触应力分析是轮轨接触问题的基础。大功率机车轮对在运行过程中相对钢轨断面产生不同横移,直接影响轮轨接触应力。应用轮轨非线性接触理论及并行计算技术,构建大功率机车轮轨接触应力分析的大规模有限元模型,并在中国科学院研究生院计算地球动力学实验室的网络集群并行计算环境下完成有限元计算,研究了轮对横移量对大功率机车轮轨接触应力影响。计算结果表明,轮对不同横移时,车轮踏面内均出现塑性变形,塑性变形从车轮踏面内约6 mm处延伸至接触表面。轮轨接触斑的横向长度与接触面积随轮对横移量的变化有着相同的变化规律。随着横移量的改变,多数情况下的轮轨接触斑形态与Hertz理论的椭圆假设有较大差别。  相似文献   

19.
轮轴过盈配合面损伤分析及对策   总被引:1,自引:0,他引:1  
轮轴过盈配合面的微动损伤常常导致车轴产生裂纹甚至断裂,为了避免以往用高压退轮的方法带来的2次损伤,采用原位剖切的方法,将车轴与轮毂配合分离来观察分析轮座表面损伤的基体特征。结合对配合面的显微观测和力学分析对损伤进行分析,结果表明:在复杂的载荷作用下,RD2型车轮与车轴轮座接触边缘发生复合微动,配合面的2个接触边缘存在一个宽度约20 mm环状磨损区域,并伴有微裂纹的形成,破坏特征完全符合微动疲劳磨损机制。评述和比较了现有的车轴抗微动损伤的措施,并提出了自己的建议,对深入研究车轴损伤机制及预防措施提供理论基础。  相似文献   

20.
研究目的:高速列车运营荷载作用将导致复合结构路基产生沉降。由于高铁对路基沉降要求高,复合结构路基的荷载传递和沉降变形规律值得工程界关注。为研究高铁复合结构路基荷载传递以及沉降变形规律的影响因素,本文建立高速铁路复合结构软土路基三维有限元分析模型,将高速铁路列车运行荷载简化为均布荷载作用于轨道板以下的路堤顶面,分析桩长、桩间土模量和下卧层模量对桩身轴力分布、桩土应力比以及路基沉降的影响规律。研究结论:(1)桩身轴力随桩长增加而增大,路基沉降则明显减小;在不同桩长下,桩土应力比沿桩身距离路基中心水平方向位置的变化均表现为先增大再减小的趋势,10 m、12.5 m、15 m和20 m桩长下桩土应力比稳定值分别为6.8、10、13和17;(2)桩身轴力随桩间土模量增大而减小;在不同桩间土模量下,桩土应力比随桩身距路基中心水平位置的偏移先稳定后增大再减小,10 MPa、30 MPa和50 MPa桩间土模量下桩土应力比分别为30、12和7;(3)下卧层模量增大使桩端摩阻力增大,桩身中性点位置向下偏移;桩土应力比随水平位置偏移的变化规律同样是先增大后减小,下卧层模量增大能使桩的沉降明显减小,但对路基总沉降影响不大;(4)该研究结论可为高铁复合结构路基及类似工程设计和施工提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号