首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 250 毫秒
1.
为便于研究轮轨接触的几何关系,将轮轨的直线上接触、曲线上接触和轮轮接触3种典型轮轨三维接触几何计算归结为轮轨直线接触平行投影轮廓和轮轨曲线、轮轮接触旋转投影轮廓的二维接触问题.利用轮对的旋转体特性,分别推导出轮对在不同投影下其底部轮廓的计算公式,给出求解步骤以及适合轮轨三维接触计算的二维同步迭代流程.以S1002CN踏面轮对与60 kg·m-1钢轨的三维接触几何关系为例,仿真分析直线、300m半径曲线及轨道轮半径为900mm的滚动试验台的轮轨三维接触几何情况.结果表明:将轮轨接触点相对于轮对底部母线的偏转角作为计算参数,使得基于投影轮廓的轮轨三维接触几何计算方法简单、易用;直线及曲线线路上的轮轨三维接触几何关系相近,当轮对摇头角小于5~10 mrad时还可用轮轨二维几何关系近似;轮对大横移下的接触点偏转角,在一定的摇头角范围内可视为轮对摇头角的线性函数;二维同步迭代能有效实现复杂条件下的轮轨三维接触几何计算;小横移条件下,轮轮三维接触即具有明显的接触点偏转角,仿真时需要修正.  相似文献   

2.
空间状态轮轮(轨)接触点计算方法   总被引:7,自引:2,他引:5  
轮轨接触几何关系是轮轨交通中最基本的问题。结合机车车辆在滚动(振动)台上进行台架试验的工况,以试验台的“轮轮”接触为研究对象,应用“迹线法”,提出在空间状态下轮轮接触点的计算方法。给出滚轮在正常位置时的轮轮接触关系计算公式,然后以此为基础,考虑包括滚轮的横向移动、垂向移动、轨底坡变化、摇头运动(模拟钢轨横向弯曲)、纵向位移误差等各种可能出现的滚轮空间状态,进而推导出滚轮在任意空间位置的轮轮接触点的计算公式,并可直接推广到轮轨接触计算中。  相似文献   

3.
为满足列车动力学仿真对轮轨接触点位置的精度要求,采用解析方法建立轮轨空间接触几何的约束方程组,并给出其在二维轮轨接触几何情形时的简化形式.以S1002车轮踏面和UIC60钢轨为例,基于符号计算平台Maple软件对该约束方程组进行求解,得到轮轨接触几何参数.结果表明:二维轮轨接触时的滚动半径差、接触角差、接触点在车轮踏面...  相似文献   

4.
为揭示轮轨廓形演变对道岔区轮轨接触几何关系的影响,结合迹线法和基于先进经验的窗口放缩搜索法,构建道岔区轮轨多点接触几何模型,并利用传统迹线法和成熟商业软件对比验证几何模型计算的精确性;在测试长期服役过程中真实车轮型面和道岔变截面钢轨廓形的基础上,研究不同服役阶段下轮轨廓形演变对接触点分布、滚动圆半径差和侧滚角的影响,进而分析轮轨接触几何关系和轮轨力过渡特性。结果表明:随着道岔通过总重的增加,轮轨接触点从基本轨提前迁移至尖轨;磨耗会导致轮轨接触点发生跳跃、分布不连续,从而显著增加轮轨间动态相互作用;随着磨耗进一步加剧,轮对侧滚角最大值从0.04 mrad逐渐减小至0 mrad并最终出现负值;轮轨垂向力和车体加速度从86.643 kN和0.032 m·s-2分别升至101.466 kN和0.038 m·s-2后,脱轨系数和轮重减载率对应从0.433和0.215分别升至0.505和0.247,显著降低了列车行车平稳性和安全性。  相似文献   

5.
现有的轮轨几何接触点计算方法的求解过程较为繁琐,计算效率较低。结合迹线法构造钢轨廓形NURBS曲线权因子与轮轨接触点的几何关系,提出一种基于BP神经网络的轮轨几何接触点的快速计算方法,实现不同钢轨廓形条件下轮轨几何接触点的快速计算。实例分析表明:训练的人工神经网络能够高效准确地实现轮轨几何接触点的计算。  相似文献   

6.
考虑轮对弹性的轮轨接触点算法   总被引:2,自引:0,他引:2  
研究轮对动力学相关问题时要考虑轮对的弹性变形,本文在传统迹线法的基础上发展一种考虑轮对弹性的轮轨接触点计算方法。该方法通过计算滚动圆上的点和该点在轨道上的投影点的法向矢量确定可能接触点,形成接触迹线,根据迹线和轨道型面的垂向最小距离确定最终的接触点。利用该方法,本文建立单轮对刚柔耦合系统动力学方程来求解轮轨接触点,并通过刚性轮对与弹性轮对的计算结果对比,讨论轮对弹性变形对接触点位置和轮轨蠕滑率的影响。结果表明,该方法可有效解决考虑轮对弹性的轮轨接触计算问题。  相似文献   

7.
王健 《铁道建筑》2022,(1):31-34
为提升车辆通过高速道岔时的运行平稳性,基于迹线法建立车轮与道岔钢轨接触几何计算模型,分析车辆通过道岔转辙器时的轮轨接触点对分布特性,发现轮轨接触位置不集中和突变是降低车辆运行平稳性的主要因素。以降低接触突变幅度为原则提出转辙器钢轨廓形打磨方案,并基于轮轨接触几何模型和车辆-道岔多刚体动力学模型,对道岔钢轨打磨的效果进行研究。结果表明:钢轨廓形打磨能有效降低道岔区轮轨接触不平顺和等效锥度,利于提升车辆的运行平稳性;打磨后轮轨横向力、车体横向加速度、脱轨系数的最大值分别降低了39.5%、7.4%、41.7%,该廓形打磨方案对提升道岔服役性能效果明显。  相似文献   

8.
提出了一种改进的基于多项式拟合的轮轨接触几何计算方法,通过分段多项式拟合得到轮轨踏面的函数,并应用于轮轨滚动接触几何的计算。计算结果表明,与实时迹线法相比,该方法的计算效率可提高40%,同时又能保证精度要求。  相似文献   

9.
根据轮轨几何约束方程的典型解得到轮轨两点接触的判断条件,运用该条件并结合迹线法给出了一种轮轨两点接触数值计算方法。  相似文献   

10.
轮轨多点接触计算方法研究   总被引:1,自引:1,他引:0  
在迹线法基础上进行轮轨接触几何关系计算.结合插值法获得轮轨间距离函数.对其求解一阶和二阶导数,根据该导数的极值点性质以及轮轨间弹性压缩量,导出轮轨多点接触计算与判定方法.以LMA型踏面与CHN60钢轨配合为实例,将新轮、新轨的接触情况与磨耗后的轮轨接触相对比,验证多点接触计算方法的可行性和有效性.研究结果表明:车轮踏面外形磨耗后,轮轨间易发生两点接触.  相似文献   

11.
王璞 《铁道建筑》2020,(4):80-83
基于有限元法建立弹性基底约束条件下30 t轴重重载道岔合金钢组合辙叉结构的轮轨接触耦合计算模型,对重载铁路道岔中典型的12号和18号合金钢组合辙叉,分别取3个特征位置进行钢轨应力和轮轨接触应力计算分析。结果表明:模型中辙叉受力与实际情况一致;2种辙叉计算结果一致;翼轨、心轨上的应力最大值分别发生在咽喉区、心轨顶宽20 mm处;考虑到顶宽20 mm处心轨的钢轨应力超出合金钢强度极限,建议对该处进行适当加强,并调整翼轨与心轨相对位置以减小心轨承载比例;由于心轨顶宽不足,轮轨接触面积过小导致顶宽20 mm处心轨承担过大的接触应力。  相似文献   

12.
利用轮轨型面测量仪测量大量即将磨耗到限的车轮踏面和钢轨轨头型面(简称旧轮和旧轨型面),从中选取具有一般性的型面建立三维有限元模型,分别研究了新旧车轮与新旧钢轨配合接触问题。通过几种轮轨接触模型的计算,总结了不同模型的接触斑面积、形状、位置,以及接触力分布和等效应力的变化规律,并分析了旧轮和旧轨被挤压出飞边的原因。结果表明:新轮-旧轨接触模型的接触斑面积较小,等效应力较大,接触位置在轨顶的两侧,说明磨耗到限旧轮踏面被镟修成标准轮踏面形状的不合理性。旧轮-旧轨配合,与其他模型相比接触斑面积最大,轮轨匹配相对较好,因此,适应旧轨轨头型面的车轮踏面形状设计对于减缓轮轨磨耗具有重要的意义。  相似文献   

13.
在轮轨损伤计算中,为了提高轮轨滚动接触解的求解效率与精度,常采用简化的非赫兹滚动接触模型.然而,此类模型的精度及适用性仍未得到充分的验证.以我国高速铁路常见的两种标准车轮型面(LMA和S1002CN)与标准CHN60钢轨的匹配状态为例,采用三种典型的非赫兹滚动接触简化模型(KP、STRIPES和ANALYN)进行模拟,...  相似文献   

14.
轮轨接触应力的有限元计算   总被引:4,自引:0,他引:4  
为了得到精确的数值解,应用弹塑性理论及大型有限元软件ANSYS对轮轨接触应力进行了有限元计算,同时对建模、单元选择、网格划分、参数确定等计算过程进行了说明,得到了不同轴重(1t~30t)时轮轨塑性区尺寸、接触斑形状、Mises当量应力最大值及轮轨接触面压应力随轴重的变化规律。  相似文献   

15.
大功率机车轮轨接触应力计算分析   总被引:1,自引:0,他引:1  
轮轨关系是大功率机车车轮国产化的重要研究内容。轮轨接触应力分析是轮轨接触问题的基础。大功率机车轮对在运行过程中相对钢轨断面产生不同横移,直接影响轮轨接触应力。应用轮轨非线性接触理论及并行计算技术,构建大功率机车轮轨接触应力分析的大规模有限元模型,并在中国科学院研究生院计算地球动力学实验室的网络集群并行计算环境下完成有限元计算,研究了轮对横移量对大功率机车轮轨接触应力影响。计算结果表明,轮对不同横移时,车轮踏面内均出现塑性变形,塑性变形从车轮踏面内约6 mm处延伸至接触表面。轮轨接触斑的横向长度与接触面积随轮对横移量的变化有着相同的变化规律。随着横移量的改变,多数情况下的轮轨接触斑形态与Hertz理论的椭圆假设有较大差别。  相似文献   

16.
为揭示我国新研究设计的60N钢轨的轮轨接触几何关系,运用常用的迹线法,以LM型和LMA型车轮踏面为例,对60 kg/m钢轨(简称60钢轨)和60N钢轨轮轨接触几何关系及其对轨底坡和轮对摇头的适应性进行详细研究。结果表明:相比60钢轨,60N钢轨与LM型和LMA型踏面匹配时,轮轨接触点在钢轨上位于钢轨中心位置附近,同时不会在钢轨轨距角附近出现轮轨接触,且在发生轮缘接触前,60N钢轨相比60钢轨对应的等效锥度随着轮对横移量变化很小,说明60N钢轨有效的改善了轮轨接触几何关系;同60钢轨,60N钢轨对于LM型车轮踏面,当轨底坡为1/20时匹配更佳,对于LMA型车轮踏面,当轨底坡为1/40时匹配更佳,而摇头角对60钢轨和60N钢轨的影响基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号